Основы электротехники Курс лекций

Начертательная геометрия
  • Cборочные единицы
  • Обозначение материалов
  • Построение лекальных кривых
  • Примеры построения сопряжений
  • Выполнение чертежей деталей
  • Машиностроительное черчение
  • Позиционные задачи
  • Способ замены плоскостей проекции
  • Теория и синтез машин и механизмов
    Черчение выполнение чертежей
    Основы технической механики
    Примеры решения задач по математике
    Тройные и двойные интегралы
    Примеры курсового расчета
    Математика лекции и примеры решения задач
    Линейная и векторная алгебра
    Математический анализ
    Дифференцирование исчисление
    Интегральное исчисление
    Дифференциальные уравнения
    Примеры вычисления интегралов
    Вычисление длин дуг кривых
    Вычисление площадей в декартовых
    координатах
    Вычисление площадей фигур при
    параметрическом задании границы (контура)
    Площадь в полярных координатах 
    Вычисление объема тела
    Вычисление длин дуг плоских кривых,
    заданных в декартовых координатах

    Вычисление длин дуг кривых,
    заданных параметрически 

    Предел функции
    Производная функции
    Интегрирование тригонометрических выражений
    Задачи на вычисление интегралов
    Исследовать функцию
    Определенный и неопределенный интеграл
    Применение тройных интегралов
    Криволинейный интеграл
    Векторная функция
    Числовые ряды
    Степенные ряды
    Понятие функции
    комплексной переменной
    Операционное исчисление
    Интеграл Фурье
    Ряды Фурье
    Машиностроительное черчение
    Черчение в инженерной практике
    Оформление чертежа
    Техническая механика
  • Штриховка разрезов
  • Спецификация
  • Неметаллические материалы
  • Техника вычерчивания и обводка
  • Построение лекальных кривых
  • Основная надпись
  • Сопряжение
  • Форматы
  • Последовательность нанесения
    размеров
  • Проецируещие прямые
  • Позиционные задачи
  • Вращение плоскости
  • Информатика
    Основы Web технологий
    Общие принципы построения вычислительных
    сетей
    Основы передачи дискретных данных
    Базовые технологии локальных сетей
    Построение локальных сетей по стандартам
    физического и канального уровней
    Сетевой уровень как средство построения
    больших сетей
    Глобальные сети
    Средства анализа и управления сетями
    Сборник задач по физике
    Электротехника и электроника
    Электрический ток
    Законы Ома и Кирхгофа
    Кинематика материальной точки
    Основные представления
    об электричестве
    Электромагнитные волны
    Физическая оптика
    Ядерная физика
    Физика элементарных частиц
    Строение атомных ядер
    Законы теплового излучения
    Классическая физика
    Энеpгия движения тел с неподвижной осью
    Постулаты теоpии относительности
    Теpмодинамические системы
    Курс лекций по химии
    Атомная энергетика
    Повышение безопасности атомной станции
    Ядерные реакторы
    Основы ядерной физики
    Использование атомной энергетики
    для решения проблем дефицита пресной воды
    Проектирование и строительство
    атомных энергоблоков
    Юбилей Атомной энергетики

    Атомная Энергетика России Аварии и инциденты Экология Кольская АЭС Ленинградская АЭС Билибинская АЭС Курская АЭС

    Ядерные реакторы технология
    Реаторы третьего поколения ВВЭР-1500

    Учебное пособие для студентов технических университетов

    Явление электромагнитной индукции и магнитные цепи

    При анализе магнитного поля ранее было установлено, что приращение количества зарядов D q , протекающих через замкнутый электрический контур в течение некоторого времени, пропорционально приращению пронизывающего этот контур магнитного потока D Ф в течение того же времени, взятому с обратным знаком.

    Явление электромагнитной индукции,

    (1)

    где r - сопротивление контура.

    Перейдем в выражении (1) к бесконечно малым приращениям [an error occurred while processing this directive]

    Явление электромагнитной индукции,

    (2)

    но из определения электрического тока, как количества электрических зарядов перемещающихся через поперечное сечение проводника в единицу времени i=dq/dt , следует, что dq=idt . Отсюда

    Явление электромагнитной индукции.

    (3)

    Произведение ir представляет собой падение напряжения в контуре электрической цепи, пронизываемом магнитным потоком Ф, и по второму закону Кирхгофа оно должно уравновешиваться ЭДС, действующей в этом контуре. Следовательно, величина, стоящая в правой части выражения (3), является электродвижущей силой, под действием которой в контуре протекает электрический ток i или

    Явление электромагнитной индукции.

    (4)

    [an error occurred while processing this directive]

    Таким образом явление электромагнитной индукции заключается в появлении (наведении) в проводящем контуре, находящемся в магнитном поле, электродвижущей силы в случае изменения величины магнитного потока, проходящего через поверхность, ограниченную этим контуром.

    При этом имеется в виду весь магнитный поток окружающий контур, т.е. создаваемый как внешними магнитными полями, так и током, протекающим в самом контуре. Кроме того, несущественно чем вызвано изменение магнитного потока. Он может изменяться в результате перемещения контура или поля друг относительно друга, или в результате изменения токов в цепях, создающих магнитный поток.

    Выражение (4) представляет собой одну из математических записейзакона электромагнитной индукции - ЭДС, наводимая в контуре электрической цепи, равна взятой с обратным знаком скорости изменения магнитного потока, проходящего через поверхность, ограниченную этим контуром.

    Строго говоря, условие проводимости контура, в котором наводится ЭДС не является необходимым. ЭДС будет наводиться и в непроводящем контуре, т.е. в диэлектрике. Различие для проводящего и непроводящего контуров будет заключаться лишь в том, что в проводящем контуре при замыкании его будет протекать токпроводимости, а в непроводящем - ток смещения.

    Если от рассмотрения контура одного витка перейти к катушке, состоящей из некоторого количества витков, то величину магнитного потока во всех выражениях нужно заменить потокосцеплением Y . Тогда ЭДС, наводимая в катушке будет

    Явление электромагнитной индукции.

    (5)

     


    Формулировка закона электромагнитной индукции, соответствующая выражению (4), относится только к контурам ограничивающим некоторую поверхность и впервые была дана Максвеллом. Однако ЭДС может наводиться и на отдельных участках контура. Это очевидно, если представить магнитный поток Ф числом единичных магнитных трубок или соответствующих линийN, т.е. Ф = N или D Ф = DN и dФ = dN . Отсюда

    Явление электромагнитной индукции,

    (6)

    Так как трубки магнитного потока непрерывны, то их число может измениться только, если они пересекут поверхность образованную контуром. Следовательно, ЭДС, наводимая в контуре электрической цепи, равна взятой с обратным знаком скорости пересечения контура магнитными линиями.

    Такая формулировка соответствует формулировке закона электромагнитной индукции Фарадея. Очевидно, что для контуров, ограничивающих поверхность, обе формулировке тождественны. Однако, магнитные линии могут пересекать не только контур, но и проводник, и в этом случае выражение (6) позволяет определить индуктированную ЭДС.

    Электрические цепи в статическом режиме

    Электрические цепи постоянного тока

    Электрические цепи переменного тока

    Переходные процессы в цепях с сосредоточенными параметрами

    [an error occurred while processing this directive]