Принимаем заказы на выполнение контрольных, курсовых, дипломных работ

Сервис для выполнения любых видов студенческих работ

Сервис для выполнения любых видов студенческих работ

 

Народная медицина

Соблазн возбуждающая  жвачка

Соблазн возбуждающая жвачка

 

KupiVip – крупнейший онлайн-магазин

Выполнение 
работ на заказ. Контрольные, курсовые и дипломные работы

Выполнение работ на заказ. Контрольные, курсовые и дипломные работы

Renoven - антиварикозный   бальзам

Renoven - антиварикозный бальзам

ШефМаркет. Доставка продуктов с рецептами

Уборка   квартир в Москве

Уборка квартир в Москве

Дизайнерская мебель

Заказ и доставка билетов

Заказ и доставка билетов

 Академия Моды и Стиля

Академия Моды и Стиля

 

Интернет-магазин Olympus

Интернет-магазин Olympus<

Методика расчета электрических цепей Метод активных и реактивных составляющих токов Метод узловых и контурных уравнений Расчёт трёхфазной цепи при соединении приемника в звезду Примеры выполнения курсовой работы
Ядерные реакторы Реаторы третьего поколения ВВЭР-1500 Сборник задач по физике Информатика Сборник задач по математике Начертательная геометрия и инженерная графика История искусства Теоретическая механика Электротехника Задачи

Методика расчета электрических цепей

Расчет методом эквивалентного генератора

В соответствии с заданием рассчитаем ток в пятой ветви. Крайние точки в пятой ветви обозначим буквами «а» и «b». Удаляем из электрической цепи пятую ветвь вместе с источником тока, подсоединенного параллельно ей.

Составляем расчетные схемы (рис. 10, 11).

Схема (рис. 10) содержит два узла (1, 3) и три ветви, подсоединенные к этим уздам: первая- ветвь 1, вторая - последовательно соединенные ветви 2 и 4, третья состоит из 3-й и 6-й ветвей.

Рис.10. Схема цепи после удаления Рис.11. Схема с эквивалентным В режиме нагрузки первичная обмотка трансформатора включена на номинальное первичное напряжение, а ко вторичной обмотке подключен приемник. В этом случае можно выделить три потока: основной поток Ф , сцепленный с первичной и обмотками, рассеяния обмотки Фроc1 Фрoс2 . [an error occurred while processing this directive]

источника тока J и 5 – й ветви генератором и удаленной частью цепи

 

Рис.12. Граф заданной электрической цепи с выделенными независимыми контурами

хсз

XL6

ХС6

Рис.13. Схема электрической цепи, подготовленная для расчета методом контурных токов

Определим ЭДС эквивалентного генератора - Uabxx :

 - напряжение между узлами 1,3 определяем по методу двух узлов

-токи в ветвях 2-4 и 3-6

- запишем уравнение обхода контура "a-b, 6, 4": Uabxx + UZ6 – UZ4= 0;

- отсюда напряжение Uabxx


Находим внутреннее сопротивление эквивалентного генератора Zвн:

- преобразуем треугольник из сопротивлений ветвей: 1,2,4 в звезду сопротивлений Za, Zb, Zc :

-подключаем комплексированную цепь к зажимам выделенной ветви:

  Ток в пятой ветви находим, используя метод наложения (см. рис.11):

  Значение тока в пятой ветви, ранее рассчитанное по методу узловых потенциалов
Следовательно, решение правильное.

  Расчет электрической цепи с взаимоиндуктивными связями методом контурных токов

Поэтому мы можем сформулировать для отдельных участков цепи два очень полезных правила, которые получили известное название законов Кирхгофа, а именно
1 правило - алгебраическая сумма токов, втекающих в данный узел, равна 0.
2 правило - сумма напряжений и э.д.с по обходу контура равна 0.
Эти правила вместе с законом Ома позволяют записать в математической форме уравнения энергетического и зарядового баланса замкнутой электрической системы.
А дальше просто нужно разрешить эти уравнения относительно токов в ветвях и узловых потенциалов (напряжений между узлами) , которые будут в этих уравнениях неизвестными.
Для полного описания системы нам необходимо составить (n-1) уравнение по 1 правилу Кирхгофа для (n-1) узла, а также m уравнений по 2 правилу Кирхгофа для m независимых контуров.
Одно уравнение по 1 правилу пропадает, так как потенциал одного узла мы принимаем равным 0 (заземляем), чтобы относительно него отсчитывать другие потенциалы.
Независимым контуром называется контур, в котором хотя бы одна ветвь не принадлежит другим контурам. Уравнения для зависимых контуров просто переопределят систему.
Таким образом, мы получаем систему интегральных уравнений с нелинейными коэффициентами (m + n 1) порядка, где m и n стремятся к .


Электрические цепи в постоянного и переменного тока