Основные представления об электричестве

Основные представления об электричестве. Ток и напряжение – параметры математических моделей электроприборов. Энергия и мощность – почувствуйте разницу между физиками и электротехниками. 3 великих элемента – резистор, индуктивность и конденсатор, их линейность и нелинейность. Закон Ома. Источники электрической энергии и их возможности. Идеальные модели источников. Составляем принципиальные схемы электроприборов и их математические модели. Законы или правила Кирхгофа. Делители напряжений и токов. Возможные методы упрощения систем уравнений (метод узловых потенциалов и эквивалентного источника).

Если тепловая и электромагнитная энергия по сути аналогичны друг другу в тепловых и электрических процессах, то потенциал аналогичен температуре, также как аналогичны феноменологические термины теплоты и электричества. И как теплота переходит из области высоких температур в область низких температур, так и электричество переходит из области с высоким потенциалом в область с низким потенциалом. Так возникло понятие электрического тока I, как перетока определённого количества электричества Q=It от высокого потенциала к низкому. Единицей измерения электрического тока в системе СИ установлен Ампер (А). Таким образом, если мы знаем механические и электромагнитные свойства используемого электромагнитным полем физического пространства, а также его геометрию, мы можем всегда рассчитать мощности, возникающие при протекании токов в этом пространстве. Используя различные элементы, в том числе проводники и изоляторы, можно создать электрическую схему преобразования электрического сигнала - либо из элементов на бумаге, с последующим математическим расчётом по приведённым выше соотношениям между током и напряжением (см. закон Ома) , либо из компонентов на лабораторном стенде с последующим измерением напряжений и токов измерительными приборами. В первом случае мы имеем так называемое математическое моделирование, а во втором случае – аналоговое моделирование.

Электротехники, пользуясь тем, что в большинстве случаев применяются линейные элементы, а также то, что применяемые источники выдают либо постоянный, либо гармонический сигнал, пошли путём упрощения модели и разработки простых методов расчёта системы уравнений. Понижение порядка системы уравнений за счёт огрубления модельного представления (снижение количества ветвей и узлов) также вполне допустимо, так как все электротехнические устройства выполняются с определёнными допусками. Как мы поступили с источником, также можно поступить и с нагрузкой. В этом случае мы имеем дело с двумя «чёрными ящиками», оборудованных выходными клеммами. Их называют двухполюсниками. Если какой-либо двухполюсник содержит источник, то его называют активным, если не содержит, то пассивным. В приведённой выше схеме сопротивление Z может рассматриваться как пассивный двухполюсник

Дифракция Принцип Гюйгенса-Френеля

Количественное выражение принципа Гюйгенса – Френеля: Каждый элемент волновой поверхности S служит источником вторичной сферической волны, амплитуда которой пропорциональна площади элемента dS и убывает с расстоянием по закону , - фаза колебаний на волновой поверхности, к – волновое число, а – определяется амплитудой светового колебания в месте нахождения элемента dS.

Дифракция на оси от круглого отверстия В отверстии помещается только первая зона Френеля, радиус отверстия . , где - амплитуда колебаний в точке Р в отсутствии препятствия,  - интенсивность в отсутствии отверстия. В центре (точка Р) – яркое пятно, интенсивность плавно спадает к периферии

Дифракция на непрозрачном диске

Магнитное поле в веществе. Гипотеза Ампера о молекулярных токах. Вектор намагничивания. Различные вещества в той или иной степени способны к намагничиванию: то есть под действием магнитного поля, в которое их помещают, приобретать магнитный момент. Одни вещества намагничиваются сильнее, другие слабее. Будем называть все эти вещества магнетиками.

Классификация магнетиков. В то время как диэлектрическая проницаемость ε у всех веществ всегда больше единицы (диэлектрическая восприимчивость κ>0), магнитная проницаемость μ может быть как больше единицы, так и меньше единицы (соответственно магнитная восприимчивость χ >0 и χ<0). Поэтому магнитные свойства веществ отличаются гораздо большим разнообразием, чем электрические свойства.

Основы электронной теории магнетизма. Магнитные моменты атомов и молекул. Атомы всех веществ состоят из положительно заряженного ядра и движущихся вокруг него отрицательно заряженных электронов. Каждый движущийся по орбите электрон образует круговой ток силы , – частота обращения электрона вокруг ядра

Природа диамагнетизма. Теорема Лармора. Если атом поместить во внешнее магнитное поле с индукцией (рис.12.1), то на электрон, движущийся по орбите, будет действовать вращательный момент сил , стремящийся установить магнитный момент электрона по направлению силовых линий магнитного поля (механического момента  - против поля).

Парамагнетизм. Закон Кюри. Теория Ланжевена. Если магнитный момент атомов  отличен от нуля, то вещество оказывается парамагнитным. Внешнее магнитное поле стремится установить магнитные моменты атомов вдоль  в то время, как тепловое движение – разбросать их равномерно по всем направлениям. В результате устанавливается некоторая преимущественная ориентация магнитных моментов атомов вдоль поля. Пьер Кюри (Curie P., 1859-1906) экспериментально установил, что магнитная восприимчивость парамагнетика зависит от температуры согласно закону (закон Кюри): , где С – постоянная Кюри, зависящая от рода вещества.

Основы электродинамики Движение заряженных частиц в постоянных электрическом и магнитном полях. Силы, действующие на заряженную частицу в электромагнитном поле. Сила Лоренца. Мы уже знаем, что на проводник с током, помещенный в магнитное поле, действует сила Ампера. Но ток в проводнике – есть направленное движение зарядов. Отсюда напрашивается вывод, что сила, действующая на проводник с током в магнитном поле, обусловлена действием сил на отдельные движущиеся заряды, от которых это действие передается уже самому проводнику. Этот вывод подтверждается, в частности, еще и тем, что пучок свободно летящих заряженных частиц отклоняется магнитным полем.

Движение заряженной частицы в однородном постоянном магнитном поле

Практические применения силы Лоренца. Эффект Холла