Построение локальных сетей по стандартам физического и канального уровней

 

Глава 1. Общие принципы построения вычислительных сетей

Глава 2. Основы передачи дискретных данных

Глава 3. Базовые технологии локальных сетей

Глава 4. Построение локальных сетей по стандартам физического и канального уровней

4.1. Структурированная кабельная система

4.1.1. Иерархия в кабельной системе

4.1.2. Выбор типа кабеля для горизонтальных подсистем

4.1.3. Выбор типа кабеля для вертикальных подсистем

4.1.4. Выбор типа кабеля для подсистемы кампуса

Выводы

  • Кабельная система составляет фундамент любой компьютерной сети. От ее качества зависят все основные свойства сети.

  • Структурированная кабельная система представляет собой набор коммуникационных элементов - кабелей, разъемов, коннекторов, кроссовых панелей и шкафов, которые удовлетворяют стандартам и позволяют создавать регулярные, легко расширяемые структуры связей.

  • Структурированная кабельная система состоит из трех подсистем: горизонтальной (в пределах этажа), вертикальной (между этажами ) и подсистемы кампуса (в пределах одной территории с несколькими зданиями).

  • Для горизонтальной подсистемы характерно наличие большого количества ответвлений и перекрестных связей. Наиболее подходящий тип кабеля - неэкранированная витая пара категории 5.

  • Вертикальная подсистема состоит из более протяженных отрезков кабеля, количество ответвлений намного меньше, чем в горизонтальной подсистеме. Предпочтительный тип кабеля - волоконно-оптический.

  • Для подсистемы кампуса характерна нерегулярная структура связей с центральным зданием. Предпочтительный тип кабеля - волоконно-оптический в специальной изоляции.

  • Кабельная система здания строится избыточной, так как стоимость последующего расширения кабельной системы превосходит стоимость установки избыточных элементов.

4.2. Концентраторы и сетевые адаптеры

4.2.1. Сетевые адаптеры

4.2.2. Концентраторы

Выводы

  • От производительности сетевых адаптеров зависит производительность любой сложной сети, так как данные всегда проходят не только через коммутаторы и маршрутизаторы сети, но и через адаптеры компьютеров, а результирующая производительность последовательно соединенных устройств определяется производительностью самого медленного устройства.

  • Сетевые адаптеры характеризуются типом поддерживаемого протокола, производительностью, шиной компьютера, к которой они могут присоединяться, типом приемопередатчика, а также наличием собственного процессора, разгружающего центральный процессор компьютера от рутинной работы.

  • Сетевые адаптеры для серверов обычно имеют собственный процессор, а клиентские сетевые адаптеры - нет.

  • Современные адаптеры умеют адаптироваться к временным параметрам шины и оперативной памяти компьютера для повышения производительности обмена «сеть-компьютер».

  • Концентраторы, кроме основной функции протокола (побитного повторения кадра на всех или последующем порту), всегда выполняют ряд полезных дополнительных функций, определяемых производителем концентратора.

  • Автосегментация - одна из важнейших дополнительных функций, с помощью которой концентратор отключает порт при обнаружении разнообразных проблем с кабелем и конечным узлом, подключенным к данному порту.

  • В число дополнительных функций входят функции защиты сети от несанкционированного доступа, запрещающие подключение к концентратору компьютеров с неизвестными МАС - адресами, а также заполняющие нулями поля данных кадров, поступающих не к станции назначения.

  • Стековые концентраторы сочетают преимущества модульных концентраторов и концентраторов с фиксированным количеством портов.

  • Многосегментные концентраторы позволяют делить сеть на сегменты программным способом, без физической перекоммутации устройств.

  • Сложные концентраторы, выполняющие дополнительные функции, обычно могут управляться централизованно по сети по протоколу SNMP.

4.3. Логическая структуризация сети с помощью мостов и коммутаторов

4.3.1. Причины логической структуризации локальных сетей

4.3.2. Принципы работы мостов

4.3.3. Коммутаторы локальных сетей

4.3.4. Полнодуплексные протоколы локальных сетей

4.3.5. Управления потоком кадров при полудуплексной работе

Выводы

  • Логическая структуризация сети необходима при построении сетей средних и крупных размеров. Использование общей разделяемой среды приемлемо только для сети, состоящей из 5-10 компьютеров.

  • Деление сети на логические сегменты повышает производительность, надежность, гибкость построения и управляемость сети.

  • Для логической структуризации сети применяются мосты и их современные преемники - коммутаторы и маршрутизаторы. Первые два типа устройств позволяют разделить сеть на логические сегменты с помощью минимума средств - только на основе протоколов канального уровня. Кроме того, эти устройства не требуют конфигурирования.

  • Логические сегменты, построенные на основе коммутаторов, являются строительными элементами более крупных сетей, объединяемых маршрутизаторами.

  • Коммутаторы - наиболее быстродействующие современные коммуникационные устройства, они позволяют соединять высокоскоростные сегменты без блокирования (уменьшения пропускной способности) межсегментного трафика.

  • Пассивный способ построения адресной таблицы коммутаторами - с помощью слежения за проходящим трафиком - приводит к невозможности работы в сетях с петлевидными связями. Другим недостатком сетей, построенных на коммутаторах, является отсутствие защиты от широковещательного шторма, который эти устройства обязаны передавать в соответствии с алгоритмом работы.

  • Применение коммутаторов позволяет сетевым адаптерам использовать полнодуплексный режим работы протоколов локальных сетей (Ethernet, Fast Ethernet, Gigabit Ethernet, Token Ring, FDDI). В этом режиме отсутствует этап доступа к разделяемой среде, а общая скорость передачи данных удваивается.

  • В полнодуплексном режиме для борьбы с перегрузками коммутаторов используется метод управления потоком, описанный в стандарте 802.3х. Он повторяет алгоритмы полной приостановки трафика по специальной команде, известной из технологий глобальных сетей.

  • При полудуплексном режиме работы коммутаторы используют для управления потоком при перегрузках два метода: агрессивный захват среды и обратное давление на конечный узел. Применение этих методов позволяет достаточно гибко управлять потоком, чередуя несколько передаваемых кадров с одним принимаемым.

4.4. Техническая реализация и дополнительные функции коммутаторов

4.4.1. Особенности технической реализации коммутаторов

4.4.2. Характеристики, влияющие на производительность коммутаторов

4.4.3. Дополнительные функции коммутаторов

4.4.4. Виртуальные локальные сети

4.4.5. Типовые схемы применения коммутаторов в локальных сетях

Выводы

  • Коммутаторы связывают процессоры портов по трем основным схемам - коммутационная матрица, общая шина и разделяемая память. В коммутаторах с фиксированным количеством портов обычно используется коммутационная матрица, а в модульных коммутаторах - сочетание коммутационной матрицы в отдельных модулях с общей шиной и разделяемой памятью для связи модулей.

  • Для поддержания неблокирующего режима работы коммутатора общая шина или разделяемая память должны обладать производительностью, превышающей сумму производительностей всех портов максимально высокоскоростного набора модулей, которые устанавливаются в шасси.

  • Основными характеристиками производительности коммутатора являются: скорость фильтрации кадров, скорость продвижения кадров, общая пропускная способность по всем портам в мегабитах в секунду, задержка передачи кадра.

  • На характеристики производительности коммутатора влияют: тип коммутации - «на лету» или с полной буферизацией, размер адресной таблицы, размер буфера кадров.

  • Для автоматического поддержания резервных связей в сложных сетях в коммутаторах реализуется алгоритм покрывающего дерева - Spanning Tree Algorithm. Этот алгоритм основан на периодической генерации служебных кадров, с помощью которых выявляются и блокируются петлевидные связи в сети.

  • Коммутаторы могут объединять сегменты разных технологий локальных сетей, транслируя протоколы канального уровня в соответствии со спецификацией IEEE 802.1Н. Единственным ограничением трансляции является использование MTU одного размера в соединяемых сегментах.

  • Коммутаторы поддерживают разнообразные пользовательские фильтры, основанные на МАС - адресах, а также на содержимом полей протоколов верхних уровней. В последнем случае администратор должен выполнить большой объем ручной работы по заданию положения поля относительно начала кадра и его требуемому значению. Обычно фильтры допускают комбинацию нескольких условий с помощью логических операторов AND и OR.

  • Коммутаторы обеспечивают поддержку качества обслуживания с помощью приоритетной обработки кадров. Стандарт 802.1р определяет дополнительное поле, состоящее из 3 бит, для хранения приоритета кадра независимо от технологии сети.

  • Технология виртуальных локальных сетей (VLAN) позволяет в сети, построенной на коммутаторах, создать изолированные группы узлов, между которыми не передается любой тип трафика, в том числе и широковещательный. Виртуальные сети являются основой для создания крупных маршрутизируемых сетей и имеют преимущество перед физически изолированными сегментами гибкостью состава, изменяемого программным путем.

  • В последнее время наблюдается отчетливая тенденция вытеснения коммутаторами концентраторов с нижних уровней крупных сетей.

  • Существуют две основные схемы применения коммутаторов: со стянутой в точку магистралью и с распределенной магистралью. В больших сетях эти схемы применяют комбинированно.

Вопросы и упражнения

Глава 5. Сетевой уровень как средство построения больших сетей

Глава 6. Глобальные сети

Глава 7. Средства анализа и управления сетями

Заключение

[an error occurred while processing this directive]