Принимаем заказы на выполнение контрольных, курсовых, дипломных работ

Сервис для выполнения любых видов студенческих работ

Сервис для выполнения любых видов студенческих работ

 

Народная медицина

Соблазн возбуждающая  жвачка

Соблазн возбуждающая жвачка

 

KupiVip – крупнейший онлайн-магазин

Выполнение 
работ на заказ. Контрольные, курсовые и дипломные работы

Выполнение работ на заказ. Контрольные, курсовые и дипломные работы

Renoven - антиварикозный   бальзам

Renoven - антиварикозный бальзам

ШефМаркет. Доставка продуктов с рецептами

Уборка   квартир в Москве

Уборка квартир в Москве

Дизайнерская мебель

Заказ и доставка билетов

Заказ и доставка билетов

 Академия Моды и Стиля

Академия Моды и Стиля

 

Интернет-магазин Olympus

Интернет-магазин Olympus<

Задание к курсовой работе 1-й закон Кирхгофа Электромагнитное поле Методика расчёта линейных электрических цепей переменного тока Метод узловых и контурных уравнений

Исходные данные.

Сетевое напряжение U1, В 220

Частота сетевого напряжения f, Гц 400

Номинальное среднее выпрямленное напряжение Uн, В 650

Номинальный средний ток нагрузки Iн, A 0,45

Коэффициент пульсаций напряжения нагрузки kп, % 3

Марка электротехнической стали Э340

Тип магнитопровода стержневой

Предварительный расчет.

Выбор типа выпрямителя. [an error occurred while processing this directive]

Так как однофазный мостовой двухполупериодный выпрямитель обладает рядом преимуществ по сравнению с другими схемами выпрямления, то его целесообразно выбрать в качестве схемы выпрямления.

Однофазный мостовой двухполупериодный выпрямитель

Рис. 3 Рис. 4

Также как и в двухполупериодной схеме выпрямления со средней точкой, в мостовой схеме напряжение прикладывается к нагрузке в течение всего периода изменения напряжения Uвх. При этом его значение при Uвх = Uвх 1 + Uвх 2 в два раза превышает выходное напряжение схемы Рис. 3. Поэтому при одном и том же напряжении нагрузки в мостовой схеме к обратносмещенным диодам прикладывается напряжение в два раза меньшее, чем в схеме Рис. 3.

Средние значения тока и напряжения на нагрузке для однофазного мостового двухполупериодного выпрямителя будут такими же, как и в двухполупериодной схеме со средней точкой:

Основная частота пульсаций выпрямленного напряжения в двухполупериодной мостовой схеме будет равна удвоенной частоте входного напряжения. Коэффициент пульсаций такой же, как и в двухполупериодной схеме со средней точкой: Kп = 0,67.

Особенностью мостовой схемы является то, что в ней последовательно с нагрузкой все время включено два диода, в то время как в описанных выше однофазной однополупериодной и однофазной двухполупериодной схемах такой диод один. Поэтому при низких входных напряжениях (4...5 В) использование мостовой схемы может оказаться неэффективным (падение напряжения на диодах по величине будет сравнимо с выходным напряжением выпрямителя) - для повышения КПД обычно применяют двухполупериодную схему со средней точкой (возможен также переход к использованию диодов Шоттки с малым падением напряжения при прямом смещении). С повышением напряжения разница в КПД схем уменьшается и определяющим фактором становится величина обратного напряжения, прикладываемого к запертым диодам в процессе работы выпрямителя. Поэтому при больших уровнях выходного напряжения обычно используют выпрямитель, выполненный по мостовой схеме.

Трёхфазные цепи.

Объединение в одной линии электропередачи нескольких цепей переменного тока с независимыми источниками электроэнергии называется многофазной системой.

Наибольшее распространение получила трёхфазная система, которая была изобретена и разработана выдающимся русским инженером М. О. Доливо-Добровольским в 1889-1891гг.

Трёхфазной симметричной системой Э.Д.С. называется совокупность трёх Э.Д.С. одинаковой частоты и амплитуды, сдвинутых друг относительно друга по фазе на 1200 . Эти три Э.Д.С. можно изобразить на временной (рис.5.1) и векторной (рис. 5.2.) диаграммах.

Трёхфазные симметричные системы Э.Д.С. получаются с помощью трёхфазного генератора, в котором имеются три самостоятельные обмотки, расположенные на статоре, и сдвинутые относительно друг друга в пространстве на 1200. В центре статора вращается магнит (рис. 5.3). Форма магнита такова, что магнитный поток, пронизывающий каждую катушку, изменяется по синусоидальному закону. Тогда по закону электромагнитной индукции в катушках будут индуцироватьсяЭ.Д.С.равной амплитуды и частоты, отличающиеся друг от друга на 1200 .


; (5.1)

;  (5.2)

. (5.3)

Комплексы действующих значений этих Э.Д.С.:

 
Следующий порядок чередования Э.Д.С.  называется прямой последовательностью фаз, а чередование называется обратной последовательностью фаз.

В дальнейшем при рассмотрении трёхфазных систем принимается прямая последовательность фаз, которая считается нормальной.

Однофазный мостовой двухполупериодный выпрямитель

Выбор типа сглаживающего фильтра.

Так как ток нагрузки меньше 0,5 А, то в качестве фильтра необходимо взять емкостный фильтр.

Емкостный фильтр является наиболее простым из всех видов сглаживающих фильтров. Он состоит из конденсатора, включаемого параллельно нагрузке. Коэффициент пульсаций напряжения на

выходе выпрямителя с емкостным фильтром может быть найден по формуле:

  Kп. ≈ 1 /( 2mf RнC )

где m зависит от схемы выпрямителя (m = 1 для однофазного однополупериодного выпрямителя, m = 2 для однофазного двухполупериодного и мостового выпрямителей),f - частота входного переменного напряжения.

Из приведенной формулы видно, что коэффициент пульсации на выходе выпрямителя с емкостным фильтром обратно пропорционален емкости применяемого конденсатора и величине сопротивления нагрузки.

Поэтому применение такого фильтра рационально только при достаточно больших значениях этих величин. По мере совершенствования технологии изготовления конденсаторов большой емкости, рассматриваемый тип фильтра вследствие своей простоты и эффективности находит все большее применение.

Выбор типа трансформатора.

Ввиду того, что маломощные трансформаторы  стержневого типа с двумя катушками имеют лучшее охлаждение и требуют меньшего расхода меди ввиду меньшей средней длины витка и возможной большей плотности тока в обмотках, то я возьму именно этот тип (рис. а ).

 Ориентировочное значение активного сопротивления трансформатора, приведенного к фазе вторичной обмотки, подсчитывается по формуле

 

а ориентировочное значение индуктивности рассеяния трансформатора, приведенной к фазе вторичной обмотки, — по формуле

Расчет выпрямителей, работающих на нагрузку с емкостной реакцией.

Аналитические формулы получим на примере однотактного трехфазного выпрямителя, схема которого и временные диаграммы, поясняющие его работу, приведены на рис. 1

Здесь приняты следующие обозначения: r – активное сопротивление фазы выпрямителя, равное сумме прямого сопротивления вентиля (полупроводникового диода) rпр и активного сопротивления обмоток трансформатора rтр, приведенного к его вторичной обмотке; Uн , Iн – номинальные значения выпрямленного напряжения и тока; U2макс, u2 – амплитудное и мгновенное значения напряжения на зажимах вторичной обмотки трансформатора; I2макс, i2 – амплитудное и мгновенное значения тока вторичной обмотки трансформатора и диода; θ - угол отсечки тока через диод; С0 – емкость конденсатора; R – сопротивление нагрузки.

Приближенное значение прямого сопротивления диода rпр должно определяться по статическим вольт-амперным характеристикам выбранного типа диода. При отсутствии таковых прямое сопротивление можно вычислить по приближенной формуле

 rпр = UД ПР /(3.Iн) 

Здесь UД ПР – прямое падение напряжения на диоде, измеренное при протекании тока Iн. Для кремниевых диодов можно принять UД ПР = 1 В, а для диодов Шоттки – 0,6 В.

 rпр =  = 0,74 Ом

 r = rпр + 2 · rmp = 12.6 +2·0.74 = 14,08 Ом (так как мостовая схема, необходимо взять два диода)

 p = 2 (однофазный мостовой двухполупериодный выпрямитель)

Действующее значение тока первичной обмотки трансформатора для двухтактных схем выпрямления рассчитывается по формуле

 I1 = I2/kтр (13)

где kтр = U1/U2 - коэффициент трансформации. Величины I1 для различных схем выпрямления приведены в табл. 1.

kтр = 220 / 487.5 = 0,451

I1 = 1,04 / 0,451 = 2,3 A

I1 = 2,3 A

Габаритная мощность трансформатора PГАБ , определяющая его габаритные размеры, равна полусумме мощностей первичной P1 и вторичной P2 обмоток, т.е.

 PГАБ = 0,5 (P1 + P2); (14)

Коэффициент пульсаций выпрямленного напряжения может быть определен из следующих соображений.

Так как сопротивление конденсатора для первой гармоники выпрямленного напряжения всегда много меньше сопротивления нагрузки XC << RН, то переменная составляющая тока замкнется в основном через конденсатор. Для высших гармоник сопротивление конденсатора будет еще меньше, и поэтому с достаточной для практических расчетов точностью амплитуду пульсаций по первой гармонике можно определить из следующего выражения:

  UМАКС 01 = IМАКС 01. XC = IМАКС 01/(pw C) (20)

где IМАКС 01 – амплитуда первой гармоники тока, протекающего через конденсатор. За один период изменения тока питающей сети через конденсатор будет проходить p импульсов тока длительностью 2θ.

Разложив ток конденсатора в ряд Фурье и взяв первую гармонику разложения, с учетом (20) и (7) получим амплитуду пульсации в виде:

Расчет трансформаторов малой мощности

(Методика)

ИСХОДНЫЕ ДАННЫЕ:

Напряжение питания U1 = 220 B

Частота питающего напряжения f = 400 Гц

Напряжения вторичных обмоток U2 = 487.5 B

Токи вторичных обмоток I2 = 1.05 A


Выбор типа выпрямителя