Принимаем заказы на выполнение контрольных, курсовых, дипломных работ

Сервис для выполнения любых видов студенческих работ

Сервис для выполнения любых видов студенческих работ

 

Народная медицина

Соблазн возбуждающая  жвачка

Соблазн возбуждающая жвачка

 

KupiVip – крупнейший онлайн-магазин

Выполнение 
работ на заказ. Контрольные, курсовые и дипломные работы

Выполнение работ на заказ. Контрольные, курсовые и дипломные работы

Renoven - антиварикозный   бальзам

Renoven - антиварикозный бальзам

ШефМаркет. Доставка продуктов с рецептами

Уборка   квартир в Москве

Уборка квартир в Москве

Дизайнерская мебель

Заказ и доставка билетов

Заказ и доставка билетов

 Академия Моды и Стиля

Академия Моды и Стиля

 

Интернет-магазин Olympus

Интернет-магазин Olympus<

Расчет сложных трехфазных цепей Расчет токов коротких замыканий ОБЩАЯ ЭЛЕКТРОТЕХНИКА Расчёт трёхфазной цепи при соединении приемника в звезду Выбор типа выпрямителя

Расчет токов коротких замыканий в энергосистеме методом симметричных составляющих

В результате различного вида коротких замыканий в сложной энергосистеме возникает несимметричный режим. Расчет токов коротких замыканий в различных точках энергосистемы является важной инженерной задачей. Также расчеты выполняются методом симметричных составляющих.

В качестве примера рассмотрим определение тока однофазного короткого замыкания на землю в заданной точке простейшей энергосистемы. Символьная схема энергосистемы показана на рис. 110. Короткое замыкание фазы А на землю происходит в конце линии электропередачи.



В соответствии с теоремой о компенсации заменим (мысленно) несимметричный участок в точке короткого замыкания несимметричным трехфазным генератором (UA, UB, UC, причем UA =0). Несимметричную систему векторов напряжений разложим (мысленно) на симметричные составляющие UA1, UA2, UA0. Для каждой из симметричных составляющих схема цепи совершенно симметрична и может быть представлена в однофазном виде. Поэтому составляются однофазные схемы для прямой (рис. 111), обратной (рис. 112) и нулевой (рис. 113) последовательностей.

Каждая из ЭДС в (2) представляет собой алгебраическую сумму ЭДС в ветвях i–го контура. Если теперь все контурные ЭДС в (2) заменить алгебраическими суммами ЭДС в соответствующих ветвях, то после группировки слагаемых получится выражение для контурного тока &в виде алгебраической суммы составляющих токов, вызванных каждой из ЭДС ветвей в отдельности. Поскольку систему независимых контуров всегда можно выбрать так, что рассматриваемая h-я ветвь войдет только в один -й контур, т.е. контурный ток &будет равен действительному току &h-й ветви, то принцип наложения справедлив для токов &любых ветвей и, следовательно, справедливость принципа наложения доказана.

Таким образом, при определении токов ветвей при помощи метода наложения следует поочередно оставлять в схеме по одному источнику, заменяя остальные их внутренними сопротивлениями, и рассчитать составляющие искомых токов в этих схемах. После этого полученные результаты для соответствующих ветвей суммируются – это и будут искомые токи в ветвях исходной цепи.

В качестве примера использования метода наложения определим ток во второй ветви схемы на рис. 1,а.

Принимая источники в цепи на рис. 1,а идеальными и учитывая, что у идеального источника ЭДС внутреннее сопротивление равно нулю, а у идеального источника тока – бесконечности, в соответствии с методом наложения приходим к расчетным схемам на рис. 1,б…1,г.

В этих цепях

;& ;& ,

где ; ; .

Таким образом,

.

Далее в соответствии с теоремой об эквивалентном генераторе производится свертка расчетных схем для каждой из симметричных составляющих относительно выводов несимметричного участка ab. В результате свертки получаются простейшие одноконтурные схемы (рис. 114а, б, в):

Для каждой из расчетных схем (рис. 114а, б, в) составляются уравнения по 2-му закону Кирхгофа:

 (1)

  (2)

  (3)

В полученной системе уравнений Кирхгофа содержится 6 неизвестных величин (IA1, IA2, IA0, UA1, UA2, UA0) и ее непосредственное решение невозможно. Поэтому система уравнений Кирхгофа дополняется тремя недостающими уравнениями, вытекающими из вида короткого замыкания. В рассматриваемом примере в точке короткого замыкания напряжение фазы А равно нулю (UA = 0), а также токи фаз В и С равны нулю (IB = IC = 0). Дополнительные уравнения будут иметь вид:

Фильтры симметричных составляющих

Фильтрами симметричных составляющих называются технические устройства или схемы, служащие для выделения соответствующих составляющих токов или напряжений из несимметричной трёхфазной системы векторов.

Напряжения и токи, выделяемые фильтрами симметричных составляющих, используются на практике в качестве входных величин для релейной защиты энергетических установок (генераторов, трансформаторов, линий электропередачи) от несимметричных режимов, возникающих в результате коротких замыканий, или для соответствующей сигнализации о несимметричном режиме.

Фильтр напряжений обратной последовательности реализуется схемой рис. 116 при следующих соотношениях между параметрами элементов: , , .

Напряжение на отдельных участках схемы с учетом заданных соотношений между парамтрами элементов:

Выходное напряжение фильтра:

Преобразуем формулу для напряжения обратной последоватеоьности путем добавления и вычитания члена :


Метод контурных токов