Принимаем заказы на выполнение контрольных, курсовых, дипломных работ

Сервис для выполнения любых видов студенческих работ

Сервис для выполнения любых видов студенческих работ

 

Народная медицина

Соблазн возбуждающая  жвачка

Соблазн возбуждающая жвачка

 

KupiVip – крупнейший онлайн-магазин

Выполнение 
работ на заказ. Контрольные, курсовые и дипломные работы

Выполнение работ на заказ. Контрольные, курсовые и дипломные работы

Renoven - антиварикозный   бальзам

Renoven - антиварикозный бальзам

ШефМаркет. Доставка продуктов с рецептами

Уборка   квартир в Москве

Уборка квартир в Москве

Дизайнерская мебель

Заказ и доставка билетов

Заказ и доставка билетов

 Академия Моды и Стиля

Академия Моды и Стиля

 

Интернет-магазин Olympus

Интернет-магазин Olympus<

Расчёт трёхфазной цепи Резонанс в электрических цепях Расчет токов коротких замыканий Электрическая цепь с последовательным соединением элементо Метод расчета тока в выделенной ветви сложной схемы

Электрическая цепь с последовательным соединением элементов R, L и C

 

 

 

Пусть в заданной схеме с последовательным соединением элементов R, L и C (рис. 47) протекает переменный ток

. Метод комплексных амплитуд Понятие о символических методах.

По 2-му закону Кирхгофа для мгновенных значений функций получим уравнение в дифференциальной форме:

.

То же уравнение в комплексной форме получит вид:

где  - комплексное сопротивление,  - реактивное (эквивалентное) сопротивление,  - модуль комплексного или полное сопротивление,  - аргумент комплексного сопротивления или угол сдвига фаз между напряжением и током на входе схемы. При  фазный угол φ>0, при этом цепь в целом носит активно-индуктивный характер, а при  и φ<0 – цепь в целом носит активно-емкостный характер. [an error occurred while processing this directive]

Уравнение закона Ома для последовательной схемы будет иметь вид: 

  - в комплексной форме,

  - в обычной форме для модулей.

 

Векторная диаграмма тока и напряжений при φ>0 показана на рис. 48.

В рассматриваемой цепи на переменном токе будут происходить одновременно два физических процесса: преобразование энергии в другие виды в резисторе R (активный процесс) и взаимный обмен энергией между магнитным полем катушки, электрическим полем конденсатора и источником энергии (реактивный процесс).

Тогда получаем матричное уравнение вида:

.&

(19)

Данное уравнение представляет собой узловые уравнения в матричной форме. Если обозначить

(20)

,&

(21)

то получим матричную форму записи уравнений, составленных по методу узловых потенциалов:

(22)

где &- матрица узловых проводимостей; &- матрица узловых токов.

В развернутом виде соотношение (22) можно записать, как:

(23)

то есть получили известный из метода узловых потенциалов результат.

По 2-му закону Кирхгофа для мгновенных значений функций получим уравнение в дифференциальной форме:

.

То же уравнение в комплексной форме получит вид:

Электрическая цепь с параллельным соединением элементов R, L и С

 

 

Пусть на входе схемы рис. 49 действует переменное напряжение:

По 1-му закону Кирхгофа для мгновенных значений функций получаем уравнение в дифференциальной форме:

То же уравнение в комплексной форме получит вид:

,

где  - комплексная проводимость,  - активная проводимость,  - реактивная индуктивная проводимость,  - реактивная емкостная проводимость,  - реактивная (эквивалентная) проводимость,  - модуль комплексной проводимости или полная проводимость,  - аргумент комплексной проводимости или угол сдвига фаз между напряжением и током на входе схемы. При  и φ>0 – цепь в целом носит активно-индуктивный характер, а при  и φ<0 – цепь в целом носит активно-емкостный характер.

Уравнение закона Ома для параллельной схемы будет иметь вид:

Активные и реактивные составляющие токов и напряжений

При расчете электрических цепей переменного тока реальные элементы цепи (приемники, источники) заменяются эквивалентными схемами замещения, состоящими из комбинации идеальных схемных элементов R, L и С.

Пусть некоторый приемник энергии носит в целом активно-индуктивный характер (например, электродвигатель). Такой приемник может быть представлен двумя простейшими схемами замещения, состоящими из 2-х схемных элементов R и L: а) последовательной (рис. 51а) и б) параллельной (рис. 51б):

 

Обе схемы будут эквивалентны друг другу при условии равенства параметров режима на входе: , .

Для последовательной схемы (рис. 51а) справедливы соотношения:

Последовательной схеме замещения соответствует представление вектора напряжения в виде суммы двух составляющих: активной составляющей Uа, совпадающей с вектором тока I, и реактивной составляющей Uр, перпендикулярной к вектору тока (рис. 52а):

 

Из геометрии рис. 52а следуют соотношения: . Треугольник, составленный из векторов , ,  получил название треугольника напряжений.

Если стороны треугольника напряжений разделить на ток I, то получится новый треугольник, подобный исходному, но сторонами которого являются полное сопротивление Z, активное сопротивление R и реактивное сопротивление X. Треугольник со сторонами Z, R, X  называется треугольником сопротивлений (рис. 52б). Из треугольника сопротивлений следуют соотношения: R=Z×cosφ, X=Z×sinφ, , .

Параллельной схеме замещения соответствует представление вектора тока в виде суммы двух составляющих: активной составляющей Iа, совпадающей с вектором напряжения U, и реактивной составляющей Iр, перпендикулярной к вектору U (рис. 53а):

Двухполюсником называется устройство или часть схемы (цепи) с двумя выводами (полюсами). Если внутри двухполюсника содержатся источники энергии, то он называется активным (A), в противном случае – пассивным (П).

Энергетические характеристики передачи энергии от активного двухполюсника (источника) к пассивному двухполюснику (приемнику) на переменном токе зависят от соотношения параметров приемника и источника между собой (рис. 54)

Компенсация реактивной мощности приемников энергии

Активная мощность приемника P=UIcosj характеризует интенсивность потребления им энергии и зависит от режима его работы.

Реактивная мощность приемника Q=UIsinj  характеризует интенсивность обмена энергией между электромагнитным полем приемника и остальной цепью. Эта мощность положительна при индуктивном характере приемника () и отрицательна при емкостном характере (). В промышленных условиях преобладающее большинство приемников имеют активно-индуктивный характер () и потребляют положительную реактивную мощность. Параллельное подключение к таким приемникам конденсаторов, потребляющих отрицательную реактивную мощность  и, таким образом, являющихся генераторами реактивной мощности для приемников, позволяет уменьшить (компенсировать) суммарную реактивную мощность: .

Компенсация реактивной мощности позволяет при неизменной активной мощности уменьшить потребляемый от сети ток:

При увеличении емкости компенсирующего конденсатора С пропорционально будет увеличиваться потребляемый им ток . Ток линии, равный геометрической сумме токов нагрузки и конденсатора (), вначале будет уменьшаться (при QL>QC), достигнет своего минимального значения при полной компенсации реактивной мощности , а затем начнет возрастать при QC > QL (рис. 57).

 

Из геометрии рис. 57 следует соотношение:

.

Тот же ток из закона Ома:

.

Из совместного решения этих двух уравнений вытекает формула для расчeта емкости компенсирующего устройства от первоначального значения tgj2 до заданного tg:


Метод узловых и контурных уравнений