Расчёт трёхфазной цепи Резонанс в электрических цепях Расчет токов коротких замыканий Электрическая цепь с последовательным соединением элементо Метод расчета тока в выделенной ветви сложной схемы

Резонанс в электрических цепях

1. Определение резонанса

В электрической цепи, содержащей катушки индуктивности L и конденсаторы C, возможны свободные гармонические колебания энергии между магнитным полем катушки   и электрическим полем конденсатора . Угловая частота этих колебаний wo, называемых свободными или собственными, определяется структурой цепи и параметрами ее отдельных элементов R, L ,C.

Резонансным режимом цепи или просто резонансом называется явление увеличения амплитуды гармонических колебаний энергии в цепи, наблюдаемое при совпадении частоты собственных колебаний wo с частотой вынужденных колебаний w, сообщаемых цепи источником энергии (wo = w).

В резонансном режиме колебания энергии между магнитным и электрическим полями замыкаются внутри цепи, обмен энергией между источником и цепью отсутствует, а вся поступающая от источника энергия преобразуется в другие виды, т.е. электрическая цепь по отношению к источнику энергии ведет себя как чисто активное сопротивление R (активная проводимость G). На этом основании условие для резонансного режима можно сформулировать через параметры элементов схемы, а именно: входное сопротивление и, соответственно, входная проводимость схемы со стороны выводов источника энергии должна носить чисто активный характер: Zвх=Rвх; Yвх=Gвх; Xвх=0; Bвх=0; или в комплексной форме: Im[Zвх]=0, Im[Yвх]=0. Задача 1. Два равных отрицательных заряда по 9 нКл находятся в воде на расстоянии 8 см друг от друга. Определить напряженность и потенциал поля в точке, расположенной на расстоянии 5 см от зарядов.

2. Резонанс напряжений

Резонанс в цепи с последовательным соединением источника энергии и реактивных элементов L и C получил название резонанса напряжений. Простейшая схема такой цепи показана на рис. 59.

 

Комплексное входное сопротивление схемы:. Измерение усилий и деформаций с использованием тензорезисторных преобразователей Целью настоящей работа является изучение принципа действия тензорезисторных преобразователей и приобретение практических навыков работы с тензометрической установкой, предназначенной для измерения механических сил и деформаций. В процессе выполнения работы студенты собирают электрическую схему тензометрической установки, определяют ее градуировочную характеристику, а затем определяют неизвестные веса и массы деталей.

Условие резонанса напряжений: Xэ= XL - XC или wL =  , откуда w0 = - резонансная или собственная частота.

Из полученного равенства следует, что резонансного режима в цепи можно достичь изменением параметров элементов L и C или частоты источника w.

В резонансном режиме полное сопротивление схемы имеет минимальное значение и равно активному сопротивлению:

= R,

а ток максимален и совпадает по фазе с напряжением источника: I=E/R; j = 0.

Векторная диаграмма напряжений и тока показана на рис. 60.


 

Как показывает анализ уравнения (3), режима резонанса можно добиться путем изменения параметров L и C, а также частоты. На основании (3) для резонансной частоты можно записать

.

(4)

Резонансными кривыми называются зависимости тока и напряжения от частоты. В качестве их примера на рис. 3 приведены типовые кривые I(f); &для цепи на рис. 1 при U=const.

Важной характеристикой резонансного контура является добротность Q, определяемая отношением напряжения на индуктивном (емкостном) элементе к входному напряжению:

,&

(5)

- и характеризующая “избирательные” свойства резонансного контура, в частности его полосу пропускания .

В резонансном режиме колебания энергии между магнитным и электрическим полями замыкаются внутри цепи, обмен энергией между источником и цепью отсутствует, а вся поступающая от источника энергия преобразуется в другие виды, т.е. электрическая цепь по отношению к источнику энергии ведет себя как чисто активное сопротивление R (активная проводимость G). На этом основании условие для резонансного режима можно сформулировать через параметры элементов схемы, а именно: входное сопротивление и, соответственно, входная проводимость схемы со стороны выводов источника энергии должна носить чисто активный характер: Zвх=Rвх; Yвх=Gвх; Xвх=0; Bвх=0; или в комплексной форме: Im[Zвх]=0, Im[Yвх]=0.

Напряжения на реактивных элементах равны по модулю, противоположны по фазе и взаимно компенсируют друг друга:

,

а напряжение на резисторе равно напряжению источника : UR=IR=U=E.

Равные по модулю напряжения на реактивных элементах UL=UC = могут значительно превосходить напряжение источника U = Е при условии, что XL=XC>>R.

Выясним энергетические процессы, протекающие в цепи в резонансном режиме. Пусть в цепи протекает ток i =Imsinwt, тогда напряжение на конденсаторе составит:

.

Сумма энергий магнитного и электрического полей равна:

Резонанс токов

Резонанс в цепи с параллельным соединением источника энергии и реактивных элементов L и C получил название резонанса токов. Простейшая схема такой цепи показана на рис. 64.

 

Комплексная входная проводимость схемы:

Условие резонанса токов:  или , откуда  - резонансная  (собственная) частота.

Из полученного равенства следует, что резонансного режима в цепи можно достичь изменением параметров элементов L и C или частоты источника w.

В резонансном режиме полная проводимость схемы равна активной проводимости и имеет минимальное значение:  = G, а ток источника также минимален и совпадает по фазе с напряжением источника ( j = 0): I =UY = UG.

Токи в ветвях с реактивными элементами IL=U(-jBL), IC =U(jBC) равны по модулю, противоположны по фазе и компенсируют друг друга, а ток в резисторе G равен току источника (I=IG=UG). Равные по модулю токи в реактивных элементах IL = IC могут значительно превосходить ток источника I при условии, что BL=BC>>G .

Схемы замещения реальных электрических цепей могут существенно отличаться от рассмотренных выше простейших последовательной или параллельной схем. Хотя условие резонансного режима в общем виде [ Im(Zвх)=0 и Im(Yвх)=0 ] для любой схемы сохраняется, однако конкретное содержание этих уравнений будет определяться структурой схемы замещения.

  На рис. 67 приведена эквивалентная схема параллельного контура, в которой реальные элементы цепи (катушка и конденсатор) представлены последовательными схемами замещения.

Входное комплексное сопротивление схемы:

Условие резонанса:

 или 

Анализ этого уравнения показывает неоднозначную зависимость условия резонанса от значений параметров каждого элемента схемы.

Если сложная схема содержит в своей структуре несколько (более двух) разнородных реактивных элементов, то при изменении частоты в ней могут наблюдаться несколько резонансных режимов (как тока, так и напряжения) в зависимости от структуры схемы.

Магнитносвязанные электрические цепи

1.Общие определения

Если магнитное поле, создаваемое одной из катушек, пересекает плоскость витков (сцеплено с витками) второй катушки, то такие катушки принято называть магнитносвязанными (индуктивносвязанными) (рис. 69а).

2. Последовательное соединение магнитносвязанных катушек

 

 Пусть две магнитносвязанные катушки (R1, L1, R2, L2, M) соединены последовательно с источником ЭДС Е (рис. 70).

 

При последовательном соединении положительное направление тока выбирается одновременно для обеих катушек, поэтому его направление относительно одноименных выводов зависит только от способа соединения катушек между собой: a) согласное (*) и б) встречное ( · ).

 При согласном включении собственные и взаимные магнитные потоки будут складываться, а при встречном — вычитаться. По второму закону Кирхгофа:

-дифференциальная форма,

   - комплексная форма

 

Здесь и далее знак “+” соответствует согласному включению, а знак “-”  - встречному.

Полученное соотношение используется на практике для экспериментального определения взаимного реактивного сопротивления XМ и соответственно взаимной индуктивности M. Для этого в цепи согласно схемы рис. 72  фиксируют показания трех измерительных приборов ( U, I, φ) при согласном (1) и встречном (2) включении катушек и по показаниям приборов определяют эквивалентные параметры цепи:

  Большему значению Xэ соответствует согласное включение, меньшему - встречное.

 

Сложная цепь с магнитносвязанными катушками

 В сложной цепи магнитосвязанные катушки могут находиться в любых ветвях. Так как направления токов в ветвях схемы выбираются  произвольно, то токи в ветвях, содержащих магнитносвязанные катушки, могут быть направлены как согласно, так и встречно.

 Расчет токов в сложной схеме с магнитносвязанными катушками производится, как правило, методом законов Кирхгофа. К расчету таких цепей неприменим метод узловых потенциалов и метод эквивалентного генератора. Учет всех слагаемых в уравнениях метода контурных токов довольно сложен, по этой причине его также не применяют.

Линейный (без сердечника) трансформатор

Схема линейного трансформатора состоит из двух магнитносвязанных катушек, к одной из которых (первичной) подключается источник ЭДС Е, а ко второй (вторичной) - нагрузка ZН (рис. 77).

 

Уравнения Кирхгофа для схемы трансформатора в комплексной форме имеют вид:


Метод узловых и контурных уравнений