Сопротивление материалов Плоская система Третий закон Ньютона Расчеты на прочность. Устойчивость сжатых стержней

[an error occurred while processing this directive]

Сопротивление материалов

Основные положения.

Гипотезы и допущения

Иметь представление о видах расчетов в сопротивлении материалов, о классификации нагрузок, о внутренних силовых факторах и возникающих деформациях, о механических напряжениях.

Знать основные понятия, гипотезы и допущения в сопротивлении материалов.

«Сопротивление материалов» — это раздел «Технической механики», в котором излагаются теоретико-экспериментальные основы и методы расчета наиболее распространенных элементов конструкций на прочность, жесткость и устойчивость.

В сопротивлении материалов пользуются данными смежных дисциплин: физики, теоретической механики, материаловедения, математики и др. В свою очередь сопротивление материалов как наука является опорной базой для целого ряда технических дисциплин.

Любые создаваемые конструкции должны быть не только прочными и надежными, но и недорогими, простыми в изготовлении и обслуживании, с минимальным расходом материалов, труда и энергии.

Расчеты сопротивления материалов являются базовыми; обеспечения основных требований к деталям и конструкциям.

Основные требования к деталям и конструкциям

и виды расчетов в сопротивлении материалов

Механические свойства материалов [an error occurred while processing this directive]

Прочность — способность не разрушаться под нагрузкой. Жесткость — способность незначительно деформироваться под нагрузкой.

Выносливость — способность длительное время выдерживать временные нагрузки.

Устойчивость — способность сохранять первоначальную форму упругого равновесия.

Вязкость — способность воспринимать ударные нагрузки.

Виды расчетов

Расчет на прочность обеспечивает неразрушение конструкции.

Расчет на жесткость обеспечивает деформации конструкции год нагрузкой в пределах допустимых норм.

Расчет на выносливость обеспечивает необходимую долговечность элементов конструкции.

Расчет на устойчивость обеспечивает сохранение необходимой формы равновесия и предотвращает внезапное искривление длинных стержней.

Для обеспечения прочности конструкций, работающих при ударных нагрузках (при ковке, штамповке и подобных случаях), проводятся расчеты на удар.

Основные гипотезы и допущения

Приступая к расчетам конструкции, следует решить, что в данном случае существенно, а что можно отбросить, т. к. решение технической задачи с полным учетом всех свойств реального объекта невозможно.

Допущения о свойствах материалов Материалы однородные — в любой точке материалы имеют одинаковые физико-механические свойства.

Статистические нагрузки (рис. 18.2а) не меняются со временем или меняются очень медленно. При действии статистических нагрузок проводится расчет на прочность.

Механические испытания, механические характеристики. Предельные и допускаемые напряжения.

Механические характеристики При построении приведенной диаграммы рассчитываются величины, имеющие условный характер, усилия в каждой из точек делят на величину начальной площади поперечного сечения, хотя в каждый момент идет деформация и площадь образца уменьшается.

Предельные и допустимые напряженияь Предельным напряжением считают напряжение, при котором в материале возникает опасное состояние (разрушение или опасная деформация).

Расчеты на прочность при растяжении и сжатии Расчеты на прочность ведутся по условиям прочности - неравенствам, выполнение которых гарантирует прочность детали при 1ных условиях.

Практические расчеты на срез и смятие. Основные предпосылки расчетов и расчетные формулы.

При сдвиге в окрестностях точки на взаимно перпендикулярных площадках возникают равные по величине касательные напряжения, направленные на соседних площадках либо от ребра, либо к ребру (рис. 23.3а).

Смятие Довольно часто одновременно со сдвигом происходит смятие боковой поверхности в месте контакта в результате передачи нагрузки от одной поверхности к другой.

Примеры деталей, работающих на сдвиг (срез) и смятие.

Какие внутренние силовые факторы возникают при сдвиге и смятии?

Геометрические характеристики плоских сечений Иметь представление о физическом смысле и порядке определения осевых, центробежных и полярных моментов инерции, о главных центральных осях и главных центральных моментах инерции.

Осевые моменты инерции Осевым моментом инерции сечения относительно некоторой оси, лежащей в этой же плоскости, называется взятая по всей площади сумма произведений элементарных площадок на квадрат их расстояния до этой оси:

Полярный момент инерции круга Для круга вначале вычисляют полярный момент инерции, затем - осевые.

Осевые моменты инерции круга и кольца.


Теоретическая механика