Теоретическая механика

Расчет трехопорной рамы Изучение сопротивления материалов требует решения конкретных задач, что позволяет глубже понять теоретические основы дисциплины. В настоящей работе рассмотрены типовые задачи по следующим разделам курса сопротивления материалов

Статически неопределимый стержень кусочно-постоянного сечения Рассмотрим стержень кусочно-постоянного сечения, закрепленный с двух концов, под действием продольных сосредоточенных сил Fk и собственного веса 

Для определения внутренних усилий и перемещений в стержне его разбивают на участки. Границами участков являются сечения стержня, где приложены сосредоточенные внешние силы или меняется площадь поперечного сечения стержня. Рассматриваемый стержень состоит из четырех участков. Пронумеруем граничные сечения стержня, присвоив точке В нулевой номер. В этом случае номера участка будет совпадать с номером верхнего сечения участка стержня. Очевидно, в основной системе перемещение верхнего сечения стержня в точке А равно нулю, так как он закреплен.

Для построения эпюры нормальных напряжений вдоль оси стержня, определим значения напряжения в опорных сечениях

Расчет систем стержней, соединенных с недеформируемым элементом

Расчет стержневой системы по предельному состоянию Расчет по предельному состоянию позволяет определить несущую способность конструкцию, т.е. предельную нагрузку, при которой конструкция теряет свою работоспособность. Потеря конструкцией работоспособности происходит по причине разрушения или потери конструкции или отдельных ее элементов, либо по причине возникновения в конструкции больших деформаций и превращения конструкции в механизм. Именно по последней причине происходит выход из рабочего состояния конструкций, состоящих из пластичных материалов.

Геометрические характеристики сечений При изучении напряженно деформированного состояния центрально- растянутых стержней использовалась единственная геометрическая характеристика – площадь поперечного сечения A. Изучение напряженно-деформированного состояния стержней, работающих на изгиб, кручение и другие виды сопротивления, выявляет новые интегральные характеристики сечений. Для определения напряжений и деформаций стержней необходимо знать численные значения этих геометрических характеристик. Следовательно, необходимо уметь определять эти характеристики, знать их свойства.

Определяют геометрические характеристики сечения – осевые, полярный и центробежный моменты инерции сечения относительно центральных осей

Круг Мора моментов инерции сечений Кроме аналитического метода определения положения главных осей и вычисления главных моментов инерции по формулам можно использовать графический метод – построение круга Мора моментов инерции сечения. Графический метод может использоваться как независимо, так и для контроля правильности аналитических расчетов. При аккуратном построении круга Мора графический метод позволяет определить положение главных осей и значения главных моментов инерции с точностью 3-х – 5-ти процентов

Геометрические характеристики прокатных профилей Для сечений, составленных из прокатных профилей (двутавры, швеллера, уголки) геометрические характеристики определяются в соответствии с ГОСТ (государственный общероссийский стандарт). В таблицах прокатных профилей приводятся все размеры, согласно которым изготовляются прокатные профили, а так же значение геометрических характеристик -  осевых моментов инерции, моментов сопротивления, радиусов инерции, координаты центра тяжести сечения, а также значение , определяющего положение главных осей несимметричных сечений (неравнобокий уголок).

Определяем координаты центров тяжести элементов сечения относительно центральных осей

Расчет трехопорных рам Рамы представляют собой геометрически неизменяемую систему, состоящую из стержней, расположенных в плоскости (плоские рамы) или в пространстве, жестко или шарнирно соединенных между собой. Сложные рамные системы, в том числе статически неопределимые, изучаются в курсе строительной механики стержневых систем. В данной работе рассматриваются простейшие плоские статически определимые рамы, состоящие из жестко соединенных прямых стержней. Конструкция рамы не имеет замкнутых контуров и имеет три опорных стержня.

Характерные особенности эпюр внутренних усилий в рамах и контроль за правильностью их построения. Нормальные силы на участках рамы, при отсутствии продольных распределенных нагрузок, постоянны. Для контроля за правильностью вычисления и построению эпюр поперечных сил и изгибающих моментов используют дифференциальные соотношения Журавского

Порядок расчета рамы Определяются опорные реакции. Простые статически определимые рамы, состоящие из жестко соединенных стержней, имеют три опорных стержня, не пересекающихся в одной точке – трехопорная рама, или одну опору с жестким защемлением - консольная рама. В трехопорной раме опорные реакции действуют вдоль опорных стержней. В консольной раме в защемлении действуют две взаимно перпендикулярные реакции и опорный момент. Направление опорных реакций (вправо, влево от сечения опорного стержня) и опорного момента выбирается произвольно. 

Пример расчета трехопорной рамы

Вычисляем значения внутренних усилий – нормальных N и поперечных Q сил и изгибающих моментов М. Для определения внутренних сил проводим сечение, которое всегда разбивает простую раму на две части, вычерчиваем одну из частей (ту, при рассмотрении которой проще определить внутренние усилия), указываем на чертеже положительные направления внутренних усилий и определяем внутренние усилия из уравнений равновесия отсеченной части рамы.

Строим эпюры внутренних усилий – N, Q, M. Предварительно выпишем полученные значения внутренних усилий по участкам. В первой графе таблице идут номера точек ограничивающих участок. Значения нормальных сил приведены на весь участок. Для поперечных сил и изгибающих моментов приведены их значения вначале и в конце участка – начало участка соответствует первой точке номера участка, конец – второй.