Интегрирование рациональных функций Найти повторный интеграл Криволинейные интегралы первого рода Физические приложения двойных интегралов Физические приложения тройных интегралов Теорема Стокса

Примеры решения задач курсового расчета, контрольной работы по математике

Тригонометрические и гиперболические подстановки

Интегрирование рациональных выражений тригонометрических функций

Интегрирование любого рационального выражения тригонометрических функций можно всегда свести к интегрированию алгебраической рациональной функции используя универсальную тригонометрическую подстановку x = 2arctg t (или ). Для преобразования рациональных выражений от sin x, cos x, tg x, ctg x, sec x и cosec x в алгебраические рациональные функции переменной t применяются следующие тригонометрические формулы:

Чтобы вычислить интеграл вида , где R - рациональная функция, используется подстановка . Аналогично, для вычисления интеграла вида , где R - рациональная функция, используется подстановка . Если подынтегральное выражение является только функцией tg x, то подстановка t = tg x преобразует такой интеграл в интеграл от рациональной функции. Для вычисления интеграла вида , где обе функции sin x и cos x входят в четной степени, применяется подстановка t = tg x и формулы

Производная показательной и логарифмической функции