Изменить порядок интегрирования в повторном интеграле Криволинейные интегралы второго рода Физические приложения поверхностных интегралов Вычислить поверхностный интеграл Вычислить тройной интеграл

Примеры решения задач курсового расчета, контрольной работы по математике

Производные тригонометрических функций

Пример Продифференцировать функцию .

Решение. Используем формулы для производной суммы функций и производной степенной функции. После подстановки производных и упрощения получаем: Поскольку , то окончательное выражение для производной имеет вид

Пример Вычислить производную функции .

Решение. Первый шаг очевиден: Так как то применяя правило производной для сложной функции, находим: Воспользовавшись для упрощения тригонометрическими формулами и , получаем ответ

Рассмотрим этот вопрос в общем виде. Пусть - любая функция двух переменных (не обязательно положительная), не­прерывная в некоторой области D, ограниченной замкнутой линией. Разобьем область D на частичные, как указано выше, выберем в каждой частичной области по произвольной точке  и составим сумму

  (*)

где  - значение функции в точке ; и , - площадь ча­стичной области.

Сумма (*) называется n-й интегральной суммой для функции в области D, соответствующей данному разбиению этой области на n частичных областей.

Определение. Двойным интегралом от функции  по области D называется предел, к которому стремится n-я интегральная сумма (*) при стремлении к нулю наибольшего диаметра частичных областей.

­Записывается это так:

Читается: «двойной интеграл от  на  по области D». Выражение , показывающее вид суммируемых слагаемых, называется подынтегральным выражением; функция назы­вается подынтегральной функцией,  - элементом площади, об­ласть D - областью интегрирования, наконец, переменные x и у на­зываются переменными интегрирования.


Дифференцирование и интегрирование степенных рядов