Изменить порядок интегрирования в повторном интеграле Криволинейные интегралы второго рода Физические приложения поверхностных интегралов Вычислить поверхностный интеграл Вычислить тройной интеграл

Примеры решения задач курсового расчета, контрольной работы по математике

Свойства дифференцируемых функций

Локальный максимум и локальный минимум функции.

Дадим определение локального максимума и локального минимума функции.

Говорят, что функция f(x) имеет в точке c локальный максимум (минимум), если найдётся такая окрестность точки c, в пределах которой значение   является наибольшим (наименьшим) среди всех значений функции в этой окрестности, то есть всюду в этой окрестности выполняется условие  ( ).

Для обозначения локального максимума и локального минимума функции употребляется единое название локальный экстремум.

Следующая теорема устанавливает необходимое условие экстремума дифференцируемой функции.

Теорема 17.1 (называется иногда теоремой Ферма). Если функция f(x) дифференцируема в точке  c и имеет в этой точке локальный экстремум, то .

Доказательство. Так как функция f(x) имеет в точке c локальный экстремум, то она не может в этой точке ни возрастать, ни убывать. Следовательно, в силу теоремы 16.1 производная   не может быть ни положительна, ни отрицательна, то есть  .

Теорема доказана.

Геометрический смысл этой теоремы заключается в том, что если в точке локального экстремума график функции имеет касательную, то эта касательная параллельна оси абсцисс (рис. 5).

Отметим, что равенство нулю производной является необходимым, но не достаточным условием локального экстремума. Рассмотрим в качестве примера функцию   ( рис.6).

 Производная этой функции . В точке  . Однако функция  возрастает на всей числовой оси и не имеет в точке   локального экстремума.


Дифференцирование и интегрирование степенных рядов