Принимаем заказы на выполнение контрольных, курсовых, дипломных работ

Сервис для выполнения любых видов студенческих работ

Сервис для выполнения любых видов студенческих работ

 

Народная медицина

Соблазн возбуждающая  жвачка

Соблазн возбуждающая жвачка

 

KupiVip – крупнейший онлайн-магазин

Выполнение 
работ на заказ. Контрольные, курсовые и дипломные работы

Выполнение работ на заказ. Контрольные, курсовые и дипломные работы

Renoven - антиварикозный   бальзам

Renoven - антиварикозный бальзам

ШефМаркет. Доставка продуктов с рецептами

Уборка   квартир в Москве

Уборка квартир в Москве

Дизайнерская мебель

Заказ и доставка билетов

Заказ и доставка билетов

 Академия Моды и Стиля

Академия Моды и Стиля

 

Интернет-магазин Olympus

Интернет-магазин Olympus<

Интегрирование рациональных функций Найти повторный интеграл Криволинейные интегралы первого рода Физические приложения двойных интегралов Физические приложения тройных интегралов Теорема Стокса

Примеры решения задач курсового расчета, контрольной работы по математике

Криволинейные интегралы второго рода

Определение Предположим, что кривая C задана векторной функцией , где переменная s − длина дуги кривой. Тогда производная векторной функции представляет собой единичный вектор, направленный вдоль касательной к данной кривой (рисунок 1). В приведенной выше формуле α, β и γ − углы между касательной и положительными направлениями осей Ox, Oy и Oz, соответственно. [an error occurred while processing this directive]
Рис.1
Рис.2
Введем векторную функцию , определенную на кривой C, так, чтобы для скалярной функции существовал криволинейный интеграл . Такой интеграл называется криволинейным интегралом второго рода от векторной функции вдоль кривой C и обозначается как Таким образом, по определению, где − единичный вектор касательной к кривой C. Последнюю формулу можно переписать также в векторной форме: где . Если кривая C лежит в плоскости Oxy, то полагая R = 0, получаем Свойства криволинейного интеграла второго рода Криволинейный интеграл II рода обладает следующими свойствами:
  • Пусть C обозначает кривую с началом в точке A и конечной точкой B. Обозначим через −C кривую противоположного направления - от B к A. Тогда
  • Если C − объединение кривых C1 и C2 (рисунок 2 выше), то
  • Если кривая C задана параметрически в виде , то
  • Если кривая C лежит в плоскости Oxy и задана уравнением (предполагается, что R =0 и t = x), то последняя формула записывается в виде
  • Производная показательной и логарифмической функции