Интегрирование рациональных функций Найти повторный интеграл Криволинейные интегралы первого рода Физические приложения двойных интегралов Физические приложения тройных интегралов Теорема Стокса

Примеры решения задач курсового расчета, контрольной работы по математике

Независимость криволинейных интегралов от пути интегрирования

Определения Криволинейный интеграл второго рода от векторной функции не зависит от пути интегрирования, если P, Q и R являются непрерывными функциями в области интегрирования D и в этой области существует скалярная функция , такая, что В этом случае криволинейный интеграл второго рода от функции вдоль кривой C от точки A до точки B выражается формулой Таким образом, если криволинейный интеграл не зависит от пути интегрирования, то для любого замкнутого контура C справедливо соотношение Векторное поле, обладающее свойством , называется потенциальным, а функция называется потенциалом. Признак потенциальности поля Криволинейный интеграл II рода от функции не зависит от пути интегрирования, если Предполагается, что каждый компонент функции имеет непрерывные частные производные по переменным x, y и z. Если криволинейный интеграл рассматривается в плоскости Oxy, то в случае потенциального поля будет справедливо соотношение В этом случае признак потенциальности векторного поля упрощается и принимает вид Рассмотренный признак является необходимым, но, вообще говоря, не достаточным для потенциальности поля. Данное условие достаточно, если только область интегрирования D односвязна.
Производная показательной и логарифмической функции