Принимаем заказы на выполнение контрольных, курсовых, дипломных работ

Сервис для выполнения любых видов студенческих работ

Сервис для выполнения любых видов студенческих работ

 

Народная медицина

Соблазн возбуждающая  жвачка

Соблазн возбуждающая жвачка

 

KupiVip – крупнейший онлайн-магазин

Выполнение 
работ на заказ. Контрольные, курсовые и дипломные работы

Выполнение работ на заказ. Контрольные, курсовые и дипломные работы

Renoven - антиварикозный   бальзам

Renoven - антиварикозный бальзам

ШефМаркет. Доставка продуктов с рецептами

Уборка   квартир в Москве

Уборка квартир в Москве

Дизайнерская мебель

Заказ и доставка билетов

Заказ и доставка билетов

 Академия Моды и Стиля

Академия Моды и Стиля

 

Интернет-магазин Olympus

Интернет-магазин Olympus<

Физические приложения криволинейных интегралов Поверхностные интегралы первого рода Тройные интегралы в декартовых координатах Тройные интегралы в цилиндрических координатах Тройные интегралы в сферических координатах

Примеры решения задач курсового расчета, контрольной работы по математике

Физические приложения поверхностных интегралов

Пример Найти массу параболической оболочки, заданной уравнением и имеющей плотность .

Решение. Воспользуемся формулой Проекция D(x,y) параболической поверхности S на плоскость xy представляет собой круг радиусом 1 с центром в начале координат. Следовательно, можно записать Переходя в подынтегральном выражении к полярным координатам, получаем Сделаем подстановку . Тогда . Здесь u = 1 при r = 0, и при r = 1. Следовательно, интеграл равен

Заменяя в этой формуле S(x) её выражением, окончательно получим

или в более удобной форме

 (А) [an error occurred while processing this directive]

Пределы внутреннего интеграла переменные; они указывают границы изменения переменной интегрирования у при постоянном значении второго аргумента х. Пределы внешнего интеграла постоянны; они указывают границы, в которых может изменяться аргумент х.

Меняя роли х и у, т. е. рассматривая сечения тела плоскостями y=const , мы найдем сначала, что площадь Q(у) такого сечения равна , где у при интегрировании считается величиной постоянной. Интегрируя затем Q(у) в пределах измене­ния у, т. е. от c до d, мы придем ко второму выражению для двойного интеграла

  (Б)

 Здесь интегрирование совершается сначала по х, а потом по у.

Производная степенной функции