Принимаем заказы на выполнение контрольных, курсовых, дипломных работ

Сервис для выполнения любых видов студенческих работ

Сервис для выполнения любых видов студенческих работ

 

Народная медицина

Соблазн возбуждающая  жвачка

Соблазн возбуждающая жвачка

 

KupiVip – крупнейший онлайн-магазин

Выполнение 
работ на заказ. Контрольные, курсовые и дипломные работы

Выполнение работ на заказ. Контрольные, курсовые и дипломные работы

Renoven - антиварикозный   бальзам

Renoven - антиварикозный бальзам

ШефМаркет. Доставка продуктов с рецептами

Уборка   квартир в Москве

Уборка квартир в Москве

Дизайнерская мебель

Заказ и доставка билетов

Заказ и доставка билетов

 Академия Моды и Стиля

Академия Моды и Стиля

 

Интернет-магазин Olympus

Интернет-магазин Olympus<

Физические приложения криволинейных интегралов Поверхностные интегралы первого рода Тройные интегралы в декартовых координатах Тройные интегралы в цилиндрических координатах Тройные интегралы в сферических координатах

Примеры решения задач курсового расчета, контрольной работы по математике

Физические приложения поверхностных интегралов

Пример Найти силу притяжения между полусферой с постоянной плотностью μ0 радиусом r с центром в начале координат и точечной массой m, расположенной в начале координат.

Решение. Рассмотрим точку M(x,y,z) полусферы, которая принадлежит малому участку поверхности dS (рисунок 5). Силу притяжения между элементом поверхности dS и массой m можно записать в виде где G − гравитационная постоянная, − единичный вектор, направленный из точки O в точку M. Так как , то можно записать После интегрирования по поверхности полусферы получаем следующие выражения для компонентов силы притяжения: В сферических координатах уравнение полусферы записывается в виде где . Известно, что элемент площади для сферы равен . Тогда компоненты силы притяжения будут равны Заметим, что результат очевиден вследствие симметрии и однородности поверхности. Поэтому, результирующая сила направлена вдоль оси Oz.
Рис.5
Рис.6
Производная степенной функции