Физические приложения криволинейных интегралов Поверхностные интегралы первого рода Тройные интегралы в декартовых координатах Тройные интегралы в цилиндрических координатах Тройные интегралы в сферических координатах

Примеры решения задач курсового расчета, контрольной работы по математике

Физические приложения тройных интегралов

Пример Определить массу и координаты центра тяжести единичного куба с плотностью ρ(x,y,z) = x + 2y + 3z (рисунок 2).

Решение. Сначала вычислим массу куба: Теперь вычислим статические моменты Mxy, Mxz, Myz. Аналогично находим моменты Mxz и Myz: Вычисляем координаты центра тяжести куба:

 Пример.

  Пример.

 

  Пример.

Область D заключим внутрь прямоугольника

 

стороны которого касаются границы области в точках А, В, С, Е. Интервал [а, b] является ортогональной проекцией области D на ось Ох, а интервал [c, d] - ортогональной проекцией облас­ти D на ось Oy. На рис.5 область D показана в плоско­сти Оху.

Точками A и C граница разбивается на две линии: ABC и AEC, каждая из которых пересекается с любой прямой, параллельной оси Oy, в одной точке. Поэтому, их уравнения можно записать в форме, разрешенной относительно y:

  (ABC),

 (AEC).

Аналогично точками В и Е граница разбивается на линии ВАЕ и ВСЕ, уравнения которых можно записать так:

 (BAE),

  (BCE).

 

 Рис.5


Производная степенной функции