Физические приложения криволинейных интегралов Поверхностные интегралы первого рода Тройные интегралы в декартовых координатах Тройные интегралы в цилиндрических координатах Тройные интегралы в сферических координатах

Примеры решения задач курсового расчета, контрольной работы по математике

Физические приложения тройных интегралов

Пример С какой силой притягивает однородный шар массы M материальную точку массы m, расположенную на расстоянии a от центра шара (a > R)?

Решение. Без снижения общности материальную точку можно поместить на оси Oz (рисунок 4), так что ее координата составляет (0, 0, a).
Рис.4
Рис.5
Решим задачу следующим образом. Сначала вычислим потенциал шара, а затем найдем силу притяжения материальной точки и шара. При этом для нахождения потенциала шара вместо вычисления тройного интеграла технически удобно сначала определить потенциал сферы (через поверхностный интеграл), а затем уже получить результат для шара (выполнив еще одно интегрирование). Итак, вычислим потенциал сферы произвольного радиуса r (r ≤ R). Выделим на сфере малый участок площадью dS, как показано на рисунке 5. Масса этого участка равна где ρ(r) − плотность сферы, а dr − ее толщина. Указанная сфера создает в точке P потенциал, равный где расстояние δ от участка dS до точки P выражено по теореме косинусов через величины a, r, θ. Учитывая, что элемент площади равен , получаем Вычислим отдельно интеграл по переменной θ. Сделаем следующую замену: пусть Тогда В результате находим интеграл Таким образом, потенциал сферы радиуса r равен Теперь можно вычислить потенциал шара радиуса R. Пусть для простоты плотность шара постоянна и равна ρ0. Получаем В полученном выражении 4/3πR3 = V − это объем шара, а ρ0V = M − масса шара. В итоге мы доказали, что потенциал гравитационного поля, создаваемого шаром на расстоянии a от центра шара (a > R), выражается формулой Далее легко найти силу притяжения шара и материальной точки. Поскольку то сила равна Знак "минус" означает, что сила направлена в сторону, противоположную оси Oz, т.е. является силой притяжения. Как видно, сила притяжения шара и точки имеет такой же вид, как и сила притяжения двух точечных масс! Это один из фундаментальных результатов в астрофизике и небесной механике. Благодаря этому, планеты и звезды часто можно рассматривать как материальные точки при описании их движения. Чтобы получить этот результат, Исаак Ньютон был вынужден даже отложить публикацию своих знаменитых "Начал Философии". Возможно трудности были связаны с тем, что он не использовал сферические координаты при решении этой задачи...

Производная степенной функции