Физические приложения криволинейных интегралов Поверхностные интегралы первого рода Тройные интегралы в декартовых координатах Тройные интегралы в цилиндрических координатах Тройные интегралы в сферических координатах

Примеры решения задач курсового расчета, контрольной работы по математике

Теорема Стокса

Пример Используя теорему Стокса, найти криволинейный интеграл . Кривая C представляет собой пересечение цилиндра и плоскости .

Решение. Обозначим через S часть плоскости, вырезаемую цилиндром. Пусть обход кривой C осуществляется против часовой стрелки, если смотреть из конечной точки вектора нормали , координаты которого равны Так как , то можно записать Далее, применяя формулу Стокса, находим Проекция поверхности S на плоскость xy представляет собой круг радиуса a. Поэтому, записывая уравнение плоскости в виде и используя формулу получаем

Вычисление двойных интегралов.

При вычислении двойного интеграла  элемент площади  нам удобно представить в ином виде. Будем разбивать область интегрирования D в плоскости Oxy на частичные области посредством двух систем координатных линий: x=const, y=const. Этими линиями служат прямые, параллельные соответственно оси Oy и оси Ox, а частичными областями - прямоугольники со сторонами, параллельными осям координат. Ясно, что площадь каждой частичной области   будет равна произведению соответствующих  и . Поэтому элемент площади  мы запишем в виде  т.е. элемент площади в декартовых координатах является произведением дифференциалов независимых переменных. Мы имеем

 .  (*)


Производная степенной функции