Принимаем заказы на выполнение контрольных, курсовых, дипломных работ

Сервис для выполнения любых видов студенческих работ

Сервис для выполнения любых видов студенческих работ

 

Народная медицина

Соблазн возбуждающая  жвачка

Соблазн возбуждающая жвачка

 

KupiVip – крупнейший онлайн-магазин

Выполнение 
работ на заказ. Контрольные, курсовые и дипломные работы

Выполнение работ на заказ. Контрольные, курсовые и дипломные работы

Renoven - антиварикозный   бальзам

Renoven - антиварикозный бальзам

ШефМаркет. Доставка продуктов с рецептами

Уборка   квартир в Москве

Уборка квартир в Москве

Дизайнерская мебель

Заказ и доставка билетов

Заказ и доставка билетов

 Академия Моды и Стиля

Академия Моды и Стиля

 

Интернет-магазин Olympus

Интернет-магазин Olympus<

Физические приложения криволинейных интегралов Поверхностные интегралы первого рода Тройные интегралы в декартовых координатах Тройные интегралы в цилиндрических координатах Тройные интегралы в сферических координатах

Примеры решения задач курсового расчета, контрольной работы по математике

Теорема Стокса

Пример Найти интеграл с использованием теоремы Стокса. Кривая C образована пересечением параболоида с плоскостью . (рисунок 4).

Решение. Пусть S будет часть плоскости, вырезанная параболоидом. Ориентация поверхности S и направление обхода контура C показаны на рисунке 4. Из уравнения плоскости найдем вектор нормали : Так как то ротор векторного поля равен По теореме Стокса находим Поскольку , то интеграл становится равным Чтобы завершить расчеты, нужно определить двойной интеграл , то есть найти площадь поверхности S. Явное уравнение плоскости имеет вид . Поэтому, по формуле где D(x,y) − это проекция S на плоскость xy, получаем Определим область интегрирования D(x,y). Решая систему уравнений находим Как видно, область D(x,y) − это круг радиуса с центром в точке . Тогда площадь области D(x,y) равна Отсюда находим окончательное значение интеграла:

Производная степенной функции