Принимаем заказы на выполнение контрольных, курсовых, дипломных работ

Сервис для выполнения любых видов студенческих работ

Сервис для выполнения любых видов студенческих работ

 

Народная медицина

Соблазн возбуждающая  жвачка

Соблазн возбуждающая жвачка

 

KupiVip – крупнейший онлайн-магазин

Выполнение 
работ на заказ. Контрольные, курсовые и дипломные работы

Выполнение работ на заказ. Контрольные, курсовые и дипломные работы

Renoven - антиварикозный   бальзам

Renoven - антиварикозный бальзам

ШефМаркет. Доставка продуктов с рецептами

Уборка   квартир в Москве

Уборка квартир в Москве

Дизайнерская мебель

Заказ и доставка билетов

Заказ и доставка билетов

 Академия Моды и Стиля

Академия Моды и Стиля

 

Интернет-магазин Olympus

Интернет-магазин Olympus<

Физические приложения криволинейных интегралов Поверхностные интегралы первого рода Тройные интегралы в декартовых координатах Тройные интегралы в цилиндрических координатах Тройные интегралы в сферических координатах

Примеры решения задач курсового расчета, контрольной работы по математике

Поверхностные интегралы первого рода

Пример Вычислить интеграл . Поверхность S задана параметрически в виде .

Решение. Найдем частные производные и их векторное произведение: Тогда элемент площади равен Теперь несложно вычислить заданный поверхностный интеграл:

 Пример.

Видно, что в результате повторного применения интегрирования по частям функцию не удалось упростить к табличному виду. Однако, последний полученный интеграл ничем не отличается от исходного. Поэтому перенесем его в левую часть равенства.

  Таким образом, интеграл найден вообще без применения таблиц интегралов.

  Прежде чем рассмотреть подробно методы интегрирования различных классов функций, приведем еще несколько примеров нахождения неопределенных интегралов приведением их к табличным.

Замечание 2. Если в области D функция меняет знак, то разбиваем область на две части: 1) область D1 где  2) область D2 ,где . Предположим, что области D1 и D2 таковы, что двойные интегралы по этим обла­стям существуют. Тогда интеграл по области D1 будет положи­телен и будет равен объему тела, лежащего выше плоскости Оху. Интеграл по D2 будет отрицателен и по абсолютной величине равен объему тела, лежащего ниже плоскости Оху, Следовательно, интеграл по D будет выражать раз­ность соответствующих объемов.

Вычисление площади плоской области.

 Если мы со­ставим интегральную сумму для функции  по области D, то эта сумма будет равна площа­ди S,

при любом способе разбиения. Пере­ходя к пределу в правой части равен­ства, получим

Если область D правильная , то площадь выразится двукратным интегралом

Производя интегрирование в скобках, имеем, очевидно,

Пример 2. Вычислить площадь области, ограниченной кривыми

 

  Рис.19

Решение. Определим точки пересечения данных кривых (Рис.19). В точке пересечения ординаты равны, т.е. , отсюда Мы получили две точки пересечения

Следовательно, искомая площадь


Производная степенной функции