Физические приложения криволинейных интегралов Поверхностные интегралы первого рода Тройные интегралы в декартовых координатах Тройные интегралы в цилиндрических координатах Тройные интегралы в сферических координатах

Примеры решения задач курсового расчета, контрольной работы по математике

Поверхностные интегралы второго рода

Если поверхность S задана явно в виде уравнения z = z(x,y), где z(x,y) − дифференцируемая функция в области D(x,y), то поверхностный интеграл второго рода от векторного поля по поверхности S записывается в одной из следующих форм:

Поверхностный интеграл второго рода можно записать также в координатной форме. Пусть P (x,y,z), Q (x,y,z), R (x,y,z) являются компонентами векторного поля . Введем cos α, cos β, cos γ − направляющие косинусы внешней нормали к поверхности S. Тогда скалярное произведение равно Следовательно, поверхностный интеграл можно записать в виде Поскольку (рисунок 1), и, аналогично, , получаем следующую формулу для вычисления поверхностного интеграла II рода: Если поверхность S задана в параметрической форме с помощью вектора , то последняя формула принимает вид где (u,v) изменяются в пределах области интегрирования D(u,v).
Рис.1
Если поверхность S не представима в явном или параметрическом виде, то ее можно попробовать разбить на конечное число частей, каждая из которых представима в таком виде. В этом случае справедливо свойство аддитивности: поверхностный интеграл второго рода по поверхности S будет равен сумме интегралов по ее частям.

Производная степенной функции