Принимаем заказы на выполнение контрольных, курсовых, дипломных работ

Сервис для выполнения любых видов студенческих работ

Сервис для выполнения любых видов студенческих работ

 

Народная медицина

Соблазн возбуждающая  жвачка

Соблазн возбуждающая жвачка

 

KupiVip – крупнейший онлайн-магазин

Выполнение 
работ на заказ. Контрольные, курсовые и дипломные работы

Выполнение работ на заказ. Контрольные, курсовые и дипломные работы

Renoven - антиварикозный   бальзам

Renoven - антиварикозный бальзам

ШефМаркет. Доставка продуктов с рецептами

Уборка   квартир в Москве

Уборка квартир в Москве

Дизайнерская мебель

Заказ и доставка билетов

Заказ и доставка билетов

 Академия Моды и Стиля

Академия Моды и Стиля

 

Интернет-магазин Olympus

Интернет-магазин Olympus<

Физические приложения криволинейных интегралов Поверхностные интегралы первого рода Тройные интегралы в декартовых координатах Тройные интегралы в цилиндрических координатах Тройные интегралы в сферических координатах

Примеры решения задач курсового расчета, контрольной работы по математике

Поверхностные интегралы второго рода

Пример Вычислить поверхностный интеграл от векторного поля по внутренне ориентированной поверхности S, заданной уравнением , где .

Решение. Применим формулу Поскольку то поверхностный интеграл можно записать в виде В результате простых вычислений находим ответ:

Пример Найти интеграл от векторного поля по поверхности S, заданной в параметрической форме вектором .

Решение. Сначала найдем частные производные. Отсюда следует, что Следовательно, векторный элемент площади равен Так как , то векторное поле можно представить в виде: Тогда исходный поверхностный интеграл равен

Приложения двойных интегралов к задачам механики.

Масса плоской пластинки переменной плотности.

Рассмотрим тонкую пластинку, расположенную на плос­кости Оху и занимающую область D. Толщину этой пластинки считаем настолько малой, что изменением плотности по толщине ее можно пренебречь.

Поверхностной плотностью такой пластинки в данной точке назы­вается предел отношения массы площадки к ее площади при условии, что площадка стягивается к данной точке.

Определенная таким образом поверхностная плотность будет зависеть только от положения данной точки, т. е. являться функ­цией ее координат:

 

Если бы плотность была постоянной (), то масса всей пластинки равнялась бы , где S - площадь пластинки. Найдем теперь массу неоднородной пластинки, считая, что ее плотность является заданной функцией . Для этого разобьем область, занимаемую пластинкой, на частичные области  с площадями  (рис. 16). Выбирая в каждой частичной области произвольную точку , будем считать, что плотность во всех точках частичной области постоянна и равна плотнос­ти   в выбранной точке. Составим приближенное выражение для массы пластинки в виде интег­ральной суммы

 (*)

Для точного выражения массы следует найти предел суммы (*) при условии и каждая частичная область стягивается к точке. Тогда


Производная степенной функции