Принимаем заказы на выполнение контрольных, курсовых, дипломных работ

Сервис для выполнения любых видов студенческих работ

Сервис для выполнения любых видов студенческих работ

 

Народная медицина

Соблазн возбуждающая  жвачка

Соблазн возбуждающая жвачка

 

KupiVip – крупнейший онлайн-магазин

Выполнение 
работ на заказ. Контрольные, курсовые и дипломные работы

Выполнение работ на заказ. Контрольные, курсовые и дипломные работы

Renoven - антиварикозный   бальзам

Renoven - антиварикозный бальзам

ШефМаркет. Доставка продуктов с рецептами

Уборка   квартир в Москве

Уборка квартир в Москве

Дизайнерская мебель

Заказ и доставка билетов

Заказ и доставка билетов

 Академия Моды и Стиля

Академия Моды и Стиля

 

Интернет-магазин Olympus

Интернет-магазин Olympus<

Физические приложения криволинейных интегралов Поверхностные интегралы первого рода Тройные интегралы в декартовых координатах Тройные интегралы в цилиндрических координатах Тройные интегралы в сферических координатах

Примеры решения задач курсового расчета, контрольной работы по математике

Поверхностные интегралы второго рода

Пример Оценить поток векторного поля через коническую поверхность , ориентированную внешней стороной.

Решение. Поверхность конуса можно описать вектором : Область интегрирования D(x,y) представляет собой круг . Найдем векторный элемент площади , перпендикулярный поверхности и направленный во внешнюю сторону. Определим частные производные: Тогда и векторный элемент равен Векторное поле на поверхности конуса можно записать в виде Отсюда следует, что поток векторного поля через поверхность S (или, другими словами, поверхностный интеграл II рода) равен Значение последнего интеграла легко вычисляется в полярных координатах.

Пример. Вычислить поверхность  сферы

 

Решение. Вычислим поверхность верхней половины сферы  (рис.22). В этом случае

Следовательно, подынтегральная функция примет вид

Область интегрирования определяется условием . Таким образом, на основании формулы (4) будем иметь

Для вычисления полученного двойного интеграла перейдём к полярным координатам. В полярных координатах граница области интегрирования определяется уравнением   Следовательно,


Производная степенной функции