Принимаем заказы на выполнение контрольных, курсовых, дипломных работ

Сервис для выполнения любых видов студенческих работ

Сервис для выполнения любых видов студенческих работ

 

Народная медицина

Соблазн возбуждающая  жвачка

Соблазн возбуждающая жвачка

 

KupiVip – крупнейший онлайн-магазин

Выполнение 
работ на заказ. Контрольные, курсовые и дипломные работы

Выполнение работ на заказ. Контрольные, курсовые и дипломные работы

Renoven - антиварикозный   бальзам

Renoven - антиварикозный бальзам

ШефМаркет. Доставка продуктов с рецептами

Уборка   квартир в Москве

Уборка квартир в Москве

Дизайнерская мебель

Заказ и доставка билетов

Заказ и доставка билетов

 Академия Моды и Стиля

Академия Моды и Стиля

 

Интернет-магазин Olympus

Интернет-магазин Olympus<

Физические приложения криволинейных интегралов Поверхностные интегралы первого рода Тройные интегралы в декартовых координатах Тройные интегралы в цилиндрических координатах Тройные интегралы в сферических координатах

Примеры решения задач курсового расчета, контрольной работы по математике

Тройные интегралы в декартовых координатах

Вычисление тройного интеграла в декартовых координатах сводится к последовательному вычислению трех определенных интегралов. Рассмотрим случай, когда область интегрирования U является элементарной относительно оси Oz, т.е. любая прямая, параллельная оси Oz, пересекает границу области U не более, чем в двух точках. Пусть область U ограничена снизу поверхностью z = z1(x,y), а сверху - поверхностью z = z2(x,y) (рисунок 1). Проекцией тела U на плоскость Oxy является область D (рисунок 2). Будем предполагать, что функции z1(x,y) и z2(x,y) непрерывны в области D.

Рис.1
Рис.2
Тогда для любой непрерывной в области U функции f (x,y,z) можно записать соотношение Таким образом, вычисление тройного интеграла сводится к вычислению двойного интеграла, в котором подынтегральной функцией является однократный интеграл. В рассмотренном случае сначала вычисляется внутренний интеграл по переменной z, а затем - двойной интеграл в области D по переменным x и y. Если область D(x,y) является областью типа I (смотрите Повторные интегралы), т.е. ограничена линиями где f1(x), f2(x) - непрерывные функции в интервале [a,b] и f1(x) ≤ f2(x), то, записывая двойной интеграл в виде повторного, получаем [an error occurred while processing this directive] В другом случае, когда область D(x,y) относится к типу II (является элементарной относительно оси Ox) и ограничена линиями где φ1(y), φ2(y) - непрерывные на отрезке [c,d] функции, причем φ1(y) ≤ φ2(y), тройной интеграл представляется в виде Формулы (1) и (2) называются формулами сведения тройного интеграла к повторному. В частном случае, когда область интегрирования U представляет собой прямоугольный параллелепипед , тройной интеграл вычисляется по формуле Если исходная область интегрирования U более сложная, чем рассмотренная выше, то ее нужно разбить на конечное число более простых областей, в которых уже можно вычислить тройные интегралы методом сведения к повторным.

Производная степенной функции