Принимаем заказы на выполнение контрольных, курсовых, дипломных работ

Сервис для выполнения любых видов студенческих работ

Сервис для выполнения любых видов студенческих работ

 

Народная медицина

Соблазн возбуждающая  жвачка

Соблазн возбуждающая жвачка

 

KupiVip – крупнейший онлайн-магазин

Выполнение 
работ на заказ. Контрольные, курсовые и дипломные работы

Выполнение работ на заказ. Контрольные, курсовые и дипломные работы

Renoven - антиварикозный   бальзам

Renoven - антиварикозный бальзам

ШефМаркет. Доставка продуктов с рецептами

Уборка   квартир в Москве

Уборка квартир в Москве

Дизайнерская мебель

Заказ и доставка билетов

Заказ и доставка билетов

 Академия Моды и Стиля

Академия Моды и Стиля

 

Интернет-магазин Olympus

Интернет-магазин Olympus<

Физические приложения криволинейных интегралов Поверхностные интегралы первого рода Тройные интегралы в декартовых координатах Тройные интегралы в цилиндрических координатах Тройные интегралы в сферических координатах

Примеры решения задач курсового расчета, контрольной работы по математике

Тройные интегралы в декартовых координатах

Пример Вычислить интеграл

Решение. Найдем последовательно все три интеграла:

Пример Вычислить интеграл

где область U расположена в первом октанте ниже плоскости 3x + 2y + z = 6. Решение. Записывая уравнение плоскости 3x + 2y + z = 6 в отрезках: изобразим область интегрирования U (рисунок 3).
Рис.3
Рис.4
Пределы интегрирования по z изменяются от z = 0 до z = 6 − 3x − 2y. Рассматривая проекцию D в плоскости Oxy, находим, что переменная y изменяется от y = 0 до (рисунок 4). При этом переменная x "пробегает" от 0 до 2. Итак, тройной интеграл выражается через повторный в виде Вычисляем последовательно все три интеграла и находим ответ:


Производная степенной функции