Принимаем заказы на выполнение контрольных, курсовых, дипломных работ

Сервис для выполнения любых видов студенческих работ

Сервис для выполнения любых видов студенческих работ

 

Народная медицина

Соблазн возбуждающая  жвачка

Соблазн возбуждающая жвачка

 

KupiVip – крупнейший онлайн-магазин

Выполнение 
работ на заказ. Контрольные, курсовые и дипломные работы

Выполнение работ на заказ. Контрольные, курсовые и дипломные работы

Renoven - антиварикозный   бальзам

Renoven - антиварикозный бальзам

ШефМаркет. Доставка продуктов с рецептами

Уборка   квартир в Москве

Уборка квартир в Москве

Дизайнерская мебель

Заказ и доставка билетов

Заказ и доставка билетов

 Академия Моды и Стиля

Академия Моды и Стиля

 

Интернет-магазин Olympus

Интернет-магазин Olympus<

Физические приложения криволинейных интегралов Поверхностные интегралы первого рода Тройные интегралы в декартовых координатах Тройные интегралы в цилиндрических координатах Тройные интегралы в сферических координатах

Примеры решения задач курсового расчета, контрольной работы по математике

Тройные интегралы в декартовых координатах

Пример Выразить тройной интеграл через повторные интегралы шестью различными способами. Область U расположена в первом октанте и ограничена цилиндром x2 + z2 = 4 и плоскостью y = 3 (рисунок 7). Найти значение интеграла.

Рис.7
Рис.8
Решение. Если порядок интегрирования имеет вид "z-y-x", то повторный интеграл выглядит как Аналогично записывается повторный интеграл для последовательности интегрирования "z-x-y": Теперь рассмотрим случай "x-y-z", т.е. когда первый внутренний интеграл берется по переменной x. Тогда Поскольку проекция тела на плоскость Oyz представляет собой прямоугольник (рисунок 8), то меняя порядок интегрирования по y и z, получаем Наконец повторный интеграл при интегрировании в порядке "y-x-z" (начиная с внутреннего интеграла) имеет вид: Последний шестой вариант записывается в виде: Мы можем использовать любой из шести повторных интегралов чтобы вычислить значение тройного интеграла. Например, используя последний интеграл, получаем: Сделаем замену: Находим окончательный ответ: Нетрудно проверить, что данное значение в точности равно 1/4 объема цилиндра, по которому проводилось интегрирование.

Производная степенной функции