Физические приложения криволинейных интегралов Поверхностные интегралы первого рода Тройные интегралы в декартовых координатах Тройные интегралы в цилиндрических координатах Тройные интегралы в сферических координатах

Примеры решения задач курсового расчета, контрольной работы по математике

Тройные интегралы в цилиндрических координатах

Пример Вычислить интеграл где область U ограничена поверхностью x2 + y2 ≤ 1 и плоскостями z = 0, z = 1 (рисунок 2).

Рис.2
Рис.3
Решение. Данный интеграл удобно вычислить в цилиндрических координатах. Проекция области интегрирования на плоскость Oxy представляет собой круг x2 + y2 ≤ 1 или 0 ≤ ρ ≤ 1 (рисунок 3). Заметим, что подынтегральное выражение записывается в виде Тогда интеграл будет равен Здесь во втором интеграле добавлен множитель ρ − якобиан преобразования декартовых координат в цилиндрические. Все три интеграла по каждой из переменной не зависят друг от друга. В результате тройной интеграл легко вычисляется:

Производная степенной функции