Принимаем заказы на выполнение контрольных, курсовых, дипломных работ

Сервис для выполнения любых видов студенческих работ

Сервис для выполнения любых видов студенческих работ

 

Народная медицина

Соблазн возбуждающая  жвачка

Соблазн возбуждающая жвачка

 

KupiVip – крупнейший онлайн-магазин

Выполнение 
работ на заказ. Контрольные, курсовые и дипломные работы

Выполнение работ на заказ. Контрольные, курсовые и дипломные работы

Renoven - антиварикозный   бальзам

Renoven - антиварикозный бальзам

ШефМаркет. Доставка продуктов с рецептами

Уборка   квартир в Москве

Уборка квартир в Москве

Дизайнерская мебель

Заказ и доставка билетов

Заказ и доставка билетов

 Академия Моды и Стиля

Академия Моды и Стиля

 

Интернет-магазин Olympus

Интернет-магазин Olympus<

Физические приложения криволинейных интегралов Поверхностные интегралы первого рода Тройные интегралы в декартовых координатах Тройные интегралы в цилиндрических координатах Тройные интегралы в сферических координатах

Примеры решения задач курсового расчета, контрольной работы по математике

Тройные интегралы в цилиндрических координатах

Пример Вычислить интеграл где область U ограничена поверхностью x2 + y2 ≤ 1 и плоскостями z = 0, z = 1 (рисунок 2).

Рис.2
Рис.3
Решение. Данный интеграл удобно вычислить в цилиндрических координатах. Проекция области интегрирования на плоскость Oxy представляет собой круг x2 + y2 ≤ 1 или 0 ≤ ρ ≤ 1 (рисунок 3). Заметим, что подынтегральное выражение записывается в виде Тогда интеграл будет равен Здесь во втором интеграле добавлен множитель ρ − якобиан преобразования декартовых координат в цилиндрические. Все три интеграла по каждой из переменной не зависят друг от друга. В результате тройной интеграл легко вычисляется:

Производная степенной функции