Провести полное исследование поведения функции и построить её график

а) y = ; б) y = (x 1); в) y =.

ОБЩИЕ ЗАМЕЧАНИЯ. План полного исследования поведения функции может быть, например, таким:

Область определения.

Чётность , нечётность, периодичность.

Непрерывность. Поведение в окрестности точек разрыва и у границ области определения. Вертикальные асимптоты.

Асимптотическое поведение при x®¥. Наклонные или горизонтальные асимптоты.

Интервалы монотонности, экстремумы.

Интервалы выпуклости и вогнутости, точки перегиба графика.

Точки пересечения с осями координат.

б) y = (x 1). Область определения: x¥ ,1)  (1,+¥ ). Чётность, нечётность, периодичность отсутствуют. Функция непрерывна всюду, кроме точки x = 1. Для выяснения поведения функции в окрестности точки разрыва вычислим односторонние пределы: [an error occurred while processing this directive]

  = ¥= +¥ ;

(x 1)= 2e- ¥ = 20 = 0,

(x 1)= 2e+ ¥ = 2+) = ¥.

Делаем вывод о наличии односторонней вертикальной асимптоты x = 1. Переходим к изучению поведения функции при x®¥.

(x 1) = ¥e0 = &

Алгебра матриц

В этой главе, прежде всего, строится матричное исчисление. На множестве матриц, определяемых как таблицы вещественных чисел, вводятся операции (сложения, умножения, умножения на число, транспонирования и обращения) и изучаются свойства этих операций. Выясняется, что наряду со свойствами операций, наследуемыми матрицами у вещественных чисел, у них появляются и новые свойства, которыми вещественные числа не обладают. Например, умножение матриц оказывается некоммутативным.

После этого обсуждается проблема разложения матрицы на простейшие. Оказывается, что любую матрицу единственным образом можно представить в виде суммы матриц, каждая из которых обладает только одним ненулевым элементом. Представление матрицы в виде произведения простейших является более сложным и нуждается в построении специального аппарата элементарных матриц, оправдывающего себя в последующих разделах курса.

Принцип равенства

Две действительные матрицы  и  называются равными (записывается ), если они имеют одинаковые размеры, т.е. числа строк и столбцов у этих матриц совпадают, и на одинаковых местах в этих матрицах стоят одинаковые элементы.

Формализуем это определение: пусть

.

Тогда

  ,

где  и  некоторые натуральные числа.

Сложение матриц

Операция сложения определена лишь для матриц одинакового размера. Именно, пусть ,

Суммой матриц  и  называется матрица

  (1.2)

О сложении матриц говорят также, что оно осуществляется поэлементно. Как уже отмечалось выше, в процессе изучения алгебры матриц мы будем пользоваться упрощенными обозначениями  и т.д., не указывая всякий раз множества возможных значений индексов  и , поскольку эти значения будут ясны из контекста. Например, следующее определение суммы матриц эквивалентно вышеприведенному определению.

5) Операции сложения и транспонирования матриц связаны формулой

 

1.5 Умножение матрицы на число

Пусть матрица  имеет вид (1.1), . Произведением матрицы  на число  называется матрица

Скалярное умножение арифметических векторов

1.7 Умножение матриц

1.6 Скалярное умножение арифметических векторов

Пусть

 

Умножение матриц

Пусть . Для того чтобы, существовало произведение   необходимо выполнение условия согласования , т.е. число столбцов матрицы  должно совпадать с числом строк матрицы  (или порядок строк матрицы  должен совпадать с порядком столбцов матрицы ). Если условие согласования выполнено, т.е.

тогда произведение  определено формулой

,

т.е. если , тогда

– элемент, стоящий в -ой строке и -ом столбце матрицы  равен скалярному произведению -ого столбца матрицы  (или транспонированной -ой строки матрицы ) на -ый столбец матрицы .

Рассмотрим основные свойства умножения матриц.

1) Если , тогда .

 ◄ Это свойство вытекает из определения произведения матриц. ►

2) Умножение матриц, вообще говоря, некоммутативно, т.е. .

 ◄ Прежде всего заметим, что произведение  и  не всегда существуют одновременно, как это видно из примера 2. Если  и  существуют одновременно, т.е. , тогда , , т.е. при  матрицы  и  разного порядка и, следовательно, несравнимы. Но даже если  и, следовательно,  и  одного порядка, равенство , вообще говоря, не выполняется. Например,

.  ►

Реакция произведения матриц на операцию транспонирования выражается формулой

 (1.10)

  ◄ Пусть , тогда , , т.е. левая и правая части равенства (1.10) существуют и имеют одинаковые порядки. Далее

 

 

 . ►

7) Рассмотрим множество квадратных матриц следующего вида:

Теория делимости квадратных матриц

 1.9* Основные типы алгебраических структур

 1.10 Элементарные преобразования над матрицами

 и элементарные матрицы

1.8 Теория делимости квадратных матриц

 Предложение 1.1. Если матрица  является истинным делителем нуля, тогда она необратима.

 ◄ Пусть матрица  и существует такая матрица , , что  или . Тогда матрица  не может быть обратимой. Действительно, если предположить существование такой матрицы , что

,

тогда умножая обе части равенства  на матрицу  справа (или обе части равенства  на матрицу  слева), получаем, что

 

и аналогично в случае . ►

 Справедливо и обратное утверждение.

Предложение 1.2. Если матрица  отлична от нуль-матрицы и не является истинным делителем нуля, тогда она обратима.

Доказательство этого утверждения будет приведено позже в «Лекции V».

Основные типы алгебраических структур.

 Пусть  и  два произвольных непустых множества. Декартовым произведением  этих множеств называется множество всевозможных упорядоченных пар вида , где . При этом две пары  и , где , считаются равными, если . Если , тогда множество  называется декартовым квадратом множества .

 Пусть . Внутренним законом композиции на множестве   называется произвольное отображение декартова квадрата во множество . Внутренний закон композиции на множестве  каждой паре  элементов множества  ставит в соответствие определенный элемент множества , который принято обозначать в виде сочетания трёх символов: элементов  и некоторого знака их соединяющего и одновременно позволяющего отличать друг от друга различные законы композиции, например,

 

,

  и т.д.

 Простейшими примерами внутренних законов композиции на множестве  являются арифметические операции сложения, вычитания и умножения действительных чисел, которые паре действительных чисел  ставят в соответствие их сумму, разность и произведение,

.

  Введенное выше поэлементное сложение матриц является внутренним законом композиции на множестве , а умножение матриц – внутренним законом композиции на множестве .

◄ Очевидно, что определенное выше поэлементное сложение матриц является внутренним законом композиции на множестве , а аксиомы абелевой группы являются следствием свойств 1) – 4) сложения матриц.  ►

 Если на множестве  определены два внутренних закона композиции, которые записываются как сложение и умножение и обладают свойствами:

  1) сложение определяет на  структуру абелевой группы;

 2) ;

 3)  для любых  из ,

тогда говорят, что на множестве  задана структура кольца. Если при этом по умножению существует единица, это кольцо называется кольцом с единицей, а если операция умножения коммутативна, кольцо называется коммутативным.

1.10 Элементарные преобразования над матрицами и элементарные матрицы

 Элементарные преобразования над матрицами бывают только трёх типов:

 1) перемена местами двух строк или столбцов; обозначения –   или  соответственно;

 2) умножение строки или столбца на число, отличное от нуля; обозначения –  или  соответственно, ;

 3) добавление к какой-либо строке или столбцу другой строки или столбца, умноженных на произвольное число ; обозначения –  или  соответственно (элементарное преобразование этого типа называется трансвекцией).

Свойства элементарных преобразований.

  1) Одно элементарное преобразование первого типа эквивалентно четырем элементарным преобразованиям второго и третьего типов.

 ◄ Пусть в матрице  нужно поменять местами, например, строки  и . Следующая цепочка элементарных преобразований второго и третьего типов приводит к результату

.  ►

 2) Элементарные преобразования обратимы, а обратные им преобразования являются элементарными преобразованиями того же самого типа, т.е. если матрица  получена из матрицы  с помощью элементарного преобразования, тогда матрица  может быть получена из матрицы  с помощью элементарного преобразования того же самого типа.

Эквивалентные матрицы

1.12* Отношение эквивалентности

1.11 Эквивалентные матрицы

Нашей ближайшей целью является доказательство того, что любая матрица с помощью элементарных преобразований может быть приведена к некоторым стандартным видам. На этом пути полезным является язык эквивалентных матриц.

Пусть . Будем говорить, что матрица  л‑эквивалентна (п‑эквивалентна или эквивалентна) матрице  и обозначать  ( или ), если матрица  может быть получена из матрицы  с помощью конечного числа строчных (соответственно столбцовых или строчных и столбцовых) элементарных преобразований. Ясно, что л‑эквивалентные и п‑эквивалентные матрицы являются эквивалентными.

Предложение 1.3 Для любой матрицы  существует л‑эквивалентная ей матрица приведённого вида.

 ◄ Во-первых, любую ненулевую строку матрицы , с помощью строчных элементарных преобразований можно сделать приведённой, т.е. если , тогда найдется конечное число строчных элементарных преобразований, применив которые к матрице , мы получим матрицу , строка которой  имеет приведённый вид.

  Действительно, если матрица  имеет вид (1.1) и , то после проведения в ней элементарных преобразований

  (1.20)

получаем матрицу

Пример 7. Построить матрицу  приведённого вида, л‑эквивалентную матрице

.

  ◄ Начиная с первой строки, указывая на каждом шаге серию проводимых элементарных преобразований, получаем

. ►

Среди всех матриц размера  выделим множество диагональных матриц , где , у которых

Матрицу  удобно записывать в так называемом блочном виде

Отношение эквивалентности.

 Пусть  – непустое множество произвольной природы и   – его декартов квадрат. Бинарным отношением на множестве  называется произвольное непустое подмножество   в . бинарное отношение на множестве   можно определить указанием всех пар , принадлежащих , говоря при этом, что элементы  и  из множества  находятся в отношении . Поскольку это не всегда удобно (например, если множество  бесконечно), то высказывание “” заменяется специальными высказываниями, зависящими от контекста, например,

.

которые читаются соответственно как “ больше ”, “ равно ”, “ влечёт ”, “ эквивалентно

 Бинарное отношение  на множестве называется отношением эквивалентности на множестве , если оно удовлетворяет условиям:

 1)  для любого ,

 2) если , тогда ,

 3) если  и , тогда .

Для отношения эквивалентности принято обозначение . Условия 1)‑3), называемые аксиомами отношения эквивалентности, в этом обозначении выглядят так:

Разложение матрицы в произведение простейших

1.14 Матричные уравнения

1.13 Разложение матрицы в произведение простейших

  Пусть  – некоторые матрицы. Введём следующее обозначение, предполагая при этом, что произведение в правой части существует,

.

Предложение 1.5. Любую ненулевую матрицу из  можно представить в виде произведения

,  (1.22)

где , – элементарные матрицы порядка , – элементарные матрицы порядка , и матрица  имеет вид (1.21).

  ◄ В силу предложения 1.4 существует конечное число строчных и столбцовых элементарных преобразований, приводящих матрицу   к виду . Так как проведение одного строчного элементарного преобразования в матрице  равносильно умножению этой матрицы слева на некоторую элементарную  матрицу порядка , а проведение в  одного столбцового элементарного преобразования равносильно умножению матрицы  справа на некоторую элементарную матрицу  порядка , получаем матричное равенство

Предложение 1.6. (1-й критерий обратимости матрицы). Для того, чтобы матрица  была обратимой, необходимо и достаточно, чтобы она была представима в виде произведения элементарных матриц.

 ◄ Достаточность. Элементарные матрицы обратимы, а произведение обратимых матриц есть матрица обратимая. Поэтому утверждение “матрица, представимая в виде произведения элементарных матриц, обратима” очевидно.

 Необходимость. Пусть матрица  обратима. Покажем, что она представима в виде произведения элементарных матриц. Прежде всего заметим, что в силу предложения 1.5 справедливо равенство (1.22), где все матрицы, входящие в это равенство, квадратные и имеют одинаковый порядок, например, . Наше утверждение будет верно, если мы покажем, что . В самом деле, матрицы

1.14 Матричные уравнения

 Уравнение, называется матричным, если в качестве неизвестного оно содержит матрицу. Простейшие матричные уравнения имеют вид

, (1.24)

,  (1.25)

, (1.26)

где  – известные матрицы, а  – неизвестные матрицы соответствующих размеров. В общем случае уравнения (1.24)-(1.26) эквивалентны некоторым системам линейных алгебраических уравнений (СЛАУ), но в том частном случае, когда матрицы   и  обратимы, теория этих уравнений проста. Прежде чем изложить её отметим, что числовая матрица  является решением уравнения (1.24), если при подстановке её в это уравнение вместо матрицы  мы получаем верное матричное равенство (и аналогично для уравнений (1.25) и (1.26)).

 Предложение 1.8. Пусть матрицы  и  обратимы, тогда уравнения (1.24)-(1.26) разрешимы при любых правых частях  соответственно, а их единственные решения определяются по формулам

Упражнения

 1. Выяснить, какие из следующих матриц равны

.

  2. Написать матрицу, транспонированную данным:

.

  3. Если матрица  имеет вид

,

то каков вид матрицы ?

 4. Матрицы  и  имеют вид:

При вычислении сложных матричных выражений целесообразно продумать порядок действий, так как от этого зависит объём вычислений.

  Пример 10. Найти матрицу , если

.

  ◄ Матрица  существует, так как порядки сомножителей согласованны

,

и имеем порядок . Благодаря свойству ассоциативности операции умножения матриц последовательность её вычисления может быть различной, например,   или .

 Напомним, что при вычислении произведения двух матриц используется скалярное умножение двух арифметических векторов порядка . Будем называть это скалярное умножение «простым», если , и – «сложным», если  (сокращённо ПСУ и ССУ). Посчитаем количества ПСУ и ССУ, которые необходимо совершить, чтобы вычислить матрицу   указанными выше способами.

Преимущество первого способа над вторым очевидно. Но есть ещё один порядок умножения, позволяющий сократить объём вычислений. Именно, .

 В самом деле,

1)  – 3 ССУ

2)  – 2 ССУ

3)  – 8 ПСУ.

  Всего: 5 ССУ и 8 ПСУ.

 Анализ трёх рассмотренных способов вычисления матрицы  позволяет дать рекомендацию: при вычислении матричных произведений с числом сомножителей больше 2-х целесообразно начинать вычисление произведений с наименьшим числом столбцов у правого сомножителя, и заканчивать вычислением произведений с наибольшим числом столбцов у правого сомножителя. ►

Часто сложное матричное выражение можно до его вычисления привести к более простому виду, используя свойства операций над матрицами.

 Пример 12. Найти матрицу

,

если

  ◄ Заметив, что

,

где

,

получаем, что

. ►

  9. Найти матрицу , если:

 а) ;

 б) .

 10. Найти матрицу , если:

 а) ;

 б) ;

 в) .

 11. Найти матрицу , если

.

  12. Найти матрицу , если:

 а) ;

 б) .

 Введём обозначение для степени матрицы

,

И заметим, что ввиду некоммутативности операции умножения матриц

.

Из условия согласования следует, что степень матрицы определена только для квадратных матриц, а степень произведения  определена для матриц прямоугольного вида. При этом число строк матрицы  должно совпадать с числом столбцов матрицы .

При вычислении степеней матриц и матричных выражений следует попытаться среди малых степеней  найти максимально простую матрицу с тем, чтобы использовать её для упрощения вычисления матрицы .

Пример 15. Разложить матрицу  в произведение простейших. Выяснить, является ли матрица  обратимой, и в случае её обратимости найти матрицу , если

.

 ◄ Решение основано на предложении 1.6 (см. пример 9). Приводим элементарными преобразованиями матрицу  к виду ,

.

  Матрица  обратима и удовлетворяет соотношению

.

Умножая полученное равенство справа на матрицу

,

  получаем, что

.

Теперь умножаем новое равенство на матрицу

 20. Матрицы из упражнения 19 разложить в произведение простейших.

 21. Выяснить, является ли матрица  обратимой, и в случае её обратимости найти матрицу . Матрица   имеет вид:

 а) , б) , в) .

Замечание. В следующей главе, основываясь на данном методе обращения матриц, мы построим более эффективную вычислительную схему для нахождения обратной матрицы, связанную с методом Гаусса решения систем линейных алгебраических уравнений.

Решение. Поделив каждое слагаемое числителя подынтегральной дроби на знаменатель, и используя, что интеграл от суммы функций равен сумме интегралов от этих функций, получим:

.

Первый интеграл является табличным: .

Во втором интеграле воспользуемся тем, что .

Получим следующую запись .

Если представить, что arcsinx=t, то данный интеграл будет интегралом от степени , но явно переходить к переменной t нет необходимости.

.