Векторная функция скалярного аргумента

Если каждому значению параметра t из некоторого промежутка  ставится в соответствие по некоторому правилу определенный вектор, то говорят, что задана вектор-функция скалярного аргумента t: .

Откладывая векторы  при  от начала координат, получаем траекторию движения конца вектора, называемую годографом вектор-функции .

Проекции вектора  на оси координат являются функциями аргумента t, поэтому можно записать вектор-функцию в координатной форме:

,

где векторы  – это орты координатных осей Ox, Oy и Oz.

Первую, вторую и т.д. производные вектор-функции  находят дифференцированием ее проекций x(t), y(t) и z(t) по аргументу t

,

Векторное поле

Поток векторного поля через поверхность

Если в любой точке M(x, y, z) области VxOyz задан вектор , то говорят, что в области V задано векторное поле . [an error occurred while processing this directive]

Примеры: силовое поле , поле скоростей  текущей жидкости, поле электростатических напряженностей .

Векторное поле является заданным, если задана векторная функция   от координат точки M(x, y, z). Как правило, функцию задают в виде , где P (x, y, z), Q (x, y, z),  R (x, y, z) являются функциями, о которых предполагают, что они непрерывны и имеют непрерывные частные производные по x, y, z в области V (область V может совпадать со всем пространством). Аналогично определяют плоское векторное поле  в двумерной области D: .

Формула Остроградского-Гаусса. Дивергенция

Формула Остроградского-Гаусса устанавливает связь между интегралом по замкнутой поверхности σ в направлении ее «внешней» нормали и тройным интегралом по области V, ограниченной этой поверхностью:

.

Пусть  – векторное поле, заданное в области VxOyz . Дивергенцией векторного поля  называется скалярная функция

, (17)

Соленоидальное векторное поле

Векторное поле  называется соленоидальным, если существует такое векторное поле , для которого поле является полем его роторов: .

Поле  называется векторным потенциалом векторного поля .

Практически соленоидальность векторного поля определяется при помощи его дивергенции: если во всех точках односвязной области V дивергенция векторного поля равна нулю, то это векторное поле является соленоидальным.

Решение примерного варианта контрольной работы №1

Задача 1. Дана функция z = cos2(2x – y). Требуется:

1) найти частные производные  и ;

2) найти полный дифференциал dz;

3) показать, что для данной функции справедливо равенство: .

Задача 2. Найти частные производные  и , если переменные x, y, и z связаны равенством 4x2 y ez – cos(x3 – z) + 2y2 + 3x = 0.

Решение.

Имеем равенство вида F(x, y, z) = 0, задающее неявно функцию 2-х переменных. Для вычисления частных производных можно использовать формулы (2) и (3).

Для F(x, y, z) = 4x2yez – cos(x3 – z) + 2y2 + 3x получаем:

F= (4x2yez – cos(x3 – z) + 2y2 + 3x) = [считаем y и z постоянными] =

= 8xyez + sin(x3 – z)3x2 + 3 = 8xyez + 3x2sin( x3 – z) + 3;

F= (4x2yez – cos(x3 – z) + 2y2 + 3x) = [считаем x и z постоянными] =

= 4x2ez + 4y;

F = (4x2yez – cos(x3 – z) + 2y2 + 3x) = [считаем x и y постоянными] =

= 4x2yez – sin (x3 – z).

По формулам (2) находим частные производные функции z = z(x, y):

Задача 4. Дана функция двух переменных: z = x2 – xy + y2 – 4x + 2y + 5 и уравнения границ замкнутой области D на плоскости xОy: x = 0, y = –1,

x + y = 3. Требуется:

1) найти наибольшее и наименьшее значения функции z в области D;

2) сделать чертеж области D в системе координат, указав на нем точки, в которых функция имеет наибольшее и наименьшее значения.

Решение.

Для наглядности процесса решения построим область D в системе координат. Область D представляет собой треугольник, ограниченный прямыми x = 0, y = –1 и x + y = 3. Обозначим вершины треугольника: A, B, C (рис 9).

Чтобы найти наибольшее и наименьшее значения функции z, сначала найдем все стационарные точки функции z = x2 – xy + y2 – 4x + 2y + 5, лежащие внутри области D (если они есть), и вычислим в них значения функции.

Стационарные точки – это точки, в которых все частные производные

Задача 5. Поверхность σ задана уравнением z =  + xy – 5x3. Составить уравнения касательной плоскости и нормали к поверхности σ в точке М0(x0, y0, z0), принадлежащей ей, если x0 = –1, y0 = 2.

Решение.

Уравнения касательной плоскости и нормали к поверхности σ получим, используя формулы (5) и (6). Найдем частные производные функции

z = f (x, y) =  + xy – 5x3:

(x, y) = ( + xy – 5x3) = –  + y – 15x2;

(x, y) = ( + xy – 5x3) =  + x.

Точка М0(x0, y0, z0) принадлежит поверхности σ, поэтому можно вычислить z0, подставив заданные x0 = –1 и y0 = 2 в уравнение поверхности:

z =  + xy – 5x3  z0 =  + (–1) 2 – 5 (–1)3 = 1.

Вычисляем значения частных производных в точке М0(–1, 2, 1):

.

Задача 6. Дано плоское скалярное поле U = x2 –2y, точка М0(1,–1) и вектор . Требуется:

1) найти уравнения линий уровня поля;

2) найти градиент поля в точке M0 и производную  в точке M0 по направлению вектора ;

3) построить в системе координат xОy 4-5 линий уровня, в том числе линию уровня, проходящую через точку M0, изобразить вектор  на этом чертеже.

Задача 7. Дана функция комплексной переменной , где z = x + iy, и точка z0 = – 1 + 3i. Требуется:

представить функцию в виде w = u(x, y) +iv(x, y), выделив ее действительную и мнимую части;

проверить, является ли функция w аналитической;

в случае аналитичности функции w найти ее производную w′ в точке z0.

Решение.

1) Выделим действительную и мнимую части функции:

.

Решение примерного варианта контрольной работы №2

Задача 1. Используя двойной интеграл, вычислить статический момент относительно оси Ox тонкой однородной пластинки, имеющей форму области D, ограниченной заданными линиями: . Построить чертеж области интегрирования.

Указание. Считать плотность вещества .

Решение.

 Область D (рис. 11) представляет собой криволинейный треугольник MNK, где . Для определения координат точки М решаем систему уравнений:

Задача 2. Используя тройной интеграл в цилиндрической системе координат, вычислить массу кругового цилиндра, нижнее основание которого лежит в плоскости xOy, а ось симметрии совпадает с осью Oz, если заданы радиус основания R = 0,5, высота цилиндра H = 2 и функция плотности , где r – полярный радиус точки.

Решение.

  Массу кругового цилиндра можно вычислить, используя тройной интеграл по области V, по формуле (12):

,

где – функция плотности, а V – область, соответствующая цилиндру.

Переходя к трехкратному интегралу в цилиндрических координатах, получаем:

Для вычисления работы используем криволинейный интеграл II рода (формула (13)): .

Составленный криволинейный интеграл сводим к определенному интегралу, используя параметрические уравнения кривой ВС:

.

Для заданной кривой получаем:

Таким образом, для нахождения работы нужно вычислить определенный интеграл:

  Сделаем замену переменной в определенном интеграле:

Задача 4. Задан радиус-вектор движущейся точки:

 . Найти векторы скорости и ускорения движения этой точки через 2 минуты после начала движения.

Решение.

Вектор-функция задана в виде: .

Найдем первые и вторые производные ее проекций x(t), y(t) z(t) по аргументу t:

Найдем векторы скорости и ускорения движения точки по формулам (14) и (15):

.

Через 2 минуты после начала движения векторы скорости и ускорения будут:

Задача 6. Проверить, является ли векторное поле силы  потенциальным или соленоидальным. В случае потенциальности поля найти его потенциал и вычислить с помощью потенциала работу силы  при перемещении единичной массы из точки M(0,1,0) в точку N(–1,2,3).

Решение.

Для проверки потенциальности векторного поля  найдем его ротор по формуле (19):

Следовательно, поле потенциально.

 Для проверки соленоидальности поля найдем его дивергенцию по формуле (17):

.

Следовательно, поле не соленоидально.

b26c2da8