Вычисление объемов Тройные и двойные интегралы Метод замены переменной Замена переменных в двойных интегралах Вычислить интеграл Двойные интегралы в полярных координатах Геометрические приложения двойных интегралов

Тройные и двойные интегралы при решении задач

Вычисление объемов с помощью тройных интегралов

Объем тела U в декартовых координатах Oxyz выражается формулой

В цилиндрических координатах объем тела равен В сферических координатах, соответственно, используется формула

Пример Найти объем конуса высотой H и радиусом основания R (рисунок 2). Математика решение задач Дифференциальные уравнения

Решение.

Рис.1

Конус ограничен поверхностью и плоскостью z = H (рисунок 1). В декартовых координатах его объем выражается формулой Вычислим этот интеграл в цилиндрических координатах, которые изменяются в пределах Получаем (не забудем включить в интеграл якобиан ρ): Находим объем конуса: Тройные и двойные интегралы при решении задач Замена переменных в двойных интегралах

Интеграл вида функция R четная относительно sinx и cosx.

 

  Для преобразования функции R в рациональную используется подстановка

t = tgx.

Тогда

Тройные и двойные интегралы при решении задач