Принимаем заказы на выполнение контрольных, курсовых, дипломных работ

Сервис для выполнения любых видов студенческих работ

Сервис для выполнения любых видов студенческих работ

 

Народная медицина

Соблазн возбуждающая  жвачка

Соблазн возбуждающая жвачка

 

KupiVip – крупнейший онлайн-магазин

Выполнение 
работ на заказ. Контрольные, курсовые и дипломные работы

Выполнение работ на заказ. Контрольные, курсовые и дипломные работы

Renoven - антиварикозный   бальзам

Renoven - антиварикозный бальзам

ШефМаркет. Доставка продуктов с рецептами

Уборка   квартир в Москве

Уборка квартир в Москве

Дизайнерская мебель

Заказ и доставка билетов

Заказ и доставка билетов

 Академия Моды и Стиля

Академия Моды и Стиля

 

Интернет-магазин Olympus

Интернет-магазин Olympus<

Вычисление объемов Тройные и двойные интегралы Метод замены переменной Замена переменных в двойных интегралах Вычислить интеграл Двойные интегралы в полярных координатах Геометрические приложения двойных интегралов

Тройные и двойные интегралы при решении задач

Вычисление объемов с помощью тройных интегралов

Объем тела U в декартовых координатах Oxyz выражается формулой

В цилиндрических координатах объем тела равен В сферических координатах, соответственно, используется формула

Пример Найти объем конуса высотой H и радиусом основания R (рисунок 2). Математика решение задач Дифференциальные уравнения

Решение.

Рис.1

Конус ограничен поверхностью и плоскостью z = H (рисунок 1). В декартовых координатах его объем выражается формулой Вычислим этот интеграл в цилиндрических координатах, которые изменяются в пределах Получаем (не забудем включить в интеграл якобиан ρ): Находим объем конуса: Тройные и двойные интегралы при решении задач Замена переменных в двойных интегралах

Интеграл вида функция R четная относительно sinx и cosx.

 

  Для преобразования функции R в рациональную используется подстановка

t = tgx.

Тогда

Тройные и двойные интегралы при решении задач