Принимаем заказы на выполнение контрольных, курсовых, дипломных работ

Сервис для выполнения любых видов студенческих работ

Сервис для выполнения любых видов студенческих работ

 

Народная медицина

Соблазн возбуждающая  жвачка

Соблазн возбуждающая жвачка

 

KupiVip – крупнейший онлайн-магазин

Выполнение 
работ на заказ. Контрольные, курсовые и дипломные работы

Выполнение работ на заказ. Контрольные, курсовые и дипломные работы

Renoven - антиварикозный   бальзам

Renoven - антиварикозный бальзам

ШефМаркет. Доставка продуктов с рецептами

Уборка   квартир в Москве

Уборка квартир в Москве

Дизайнерская мебель

Заказ и доставка билетов

Заказ и доставка билетов

 Академия Моды и Стиля

Академия Моды и Стиля

 

Интернет-магазин Olympus

Интернет-магазин Olympus<

Вычисление объемов Тройные и двойные интегралы Метод замены переменной Замена переменных в двойных интегралах Вычислить интеграл Двойные интегралы в полярных координатах Геометрические приложения двойных интегралов

Тройные и двойные интегралы при решении задач

Замена переменных в двойных интегралах

Пример Вычислить двойной интеграл , в котором область определения R ограничена прямыми .

Решение. Область R схематически показана на рисунке 1. Для упрощения интеграла выполним замену переменных. Полагая , получаем Следовательно, образ S области R имеет вид прямоугольника, как показано на рисунке 2.
Рис.1 Рис.2
Определим якобиан данного преобразования. Тогда Следовательно, дифференциал преобразуется следующим образом: В новых переменных интеграл вычисляется намного легче:

Найти экстремум функции f(x, y) = xy, если уравнение связи: 2x + 3y – 5 = 0

  Таким образом, функция имеет экстремум в точке .

Использование функции Лагранжа для нахождения точек экстремума функции называется также методом множителей Лагранжа.

Тройные и двойные интегралы при решении задач