Вычисление объемов Тройные и двойные интегралы Метод замены переменной Замена переменных в двойных интегралах Вычислить интеграл Двойные интегралы в полярных координатах Геометрические приложения двойных интегралов

Тройные и двойные интегралы при решении задач

Замена переменных в двойных интегралах

Пример Вычислить двойной интеграл , в котором область интегрирования R ограничена прямыми линиями .

Решение. Область интегрирования R имеет вид неправильного треугольника и показана на рисунке 3. Чтобы упростить ее, введем новые переменные: . Выразим x, y через u, v и определим образ области интегрирования S в новой системе координат. Легко видеть, что
Рис.3 Рис.4
Заметим, что Следовательно, Таким образом, мы получаем Если , то . Соответственно, если , то . Область S имеет вид прямоугольного треугольника (рисунок 4 выше). Уравнение стороны можно переписать в виде Найдем якобиан. Следовательно, и двойной интеграл становится равным

Площадь поверхности

Двусторонние поверхности. Рассмотрим сначала поверхность , представляющую собой график функции (1), имеющей непрерывные частные производные для всех , где - область на плоскости.

У этой поверхности, очевидно, есть 2 стороны: верхняя и нижняя. Верхняя сторона может быть охарактеризована тем, что из двух возможных направлений нормали к этой поверхности в любой ее точке выбирается то, которое составляет с осью острый угол (нижней стороне, соответственно, отвечает тупой угол между нормалью и осью ).

Пусть - точка этой поверхности, т.е. .

Уравнение касательной плоскости к этой поверхности в точке имеет вид (2).

Напомним, что в общем уравнении плоскости числа представляют собой координаты перпендикулярного к этой плоскости вектора. Согласно (2), - координаты некоторого нормального вектора к поверхности в точке . Этот вектор, вообще говоря, не единичный. Умножая его на один из нормирующих множителей мы получим 2 единичных вектора (3) и .

Известно, что координаты единичного вектора (3) – это косинусы углов, составляемых этим вектором с осями соответственно, т.е. . Т.к. , то . Кроме того, заметим, что .

Отметим, что , поэтому верхней стороне соответствует вектор .

Тройные и двойные интегралы при решении задач