Принимаем заказы на выполнение контрольных, курсовых, дипломных работ

Сервис для выполнения любых видов студенческих работ

Сервис для выполнения любых видов студенческих работ

 

Народная медицина

Соблазн возбуждающая  жвачка

Соблазн возбуждающая жвачка

 

KupiVip – крупнейший онлайн-магазин

Выполнение 
работ на заказ. Контрольные, курсовые и дипломные работы

Выполнение работ на заказ. Контрольные, курсовые и дипломные работы

Renoven - антиварикозный   бальзам

Renoven - антиварикозный бальзам

ШефМаркет. Доставка продуктов с рецептами

Уборка   квартир в Москве

Уборка квартир в Москве

Дизайнерская мебель

Заказ и доставка билетов

Заказ и доставка билетов

 Академия Моды и Стиля

Академия Моды и Стиля

 

Интернет-магазин Olympus

Интернет-магазин Olympus<

Вычисление объемов Тройные и двойные интегралы Метод замены переменной Замена переменных в двойных интегралах Вычислить интеграл Двойные интегралы в полярных координатах Геометрические приложения двойных интегралов

Тройные и двойные интегралы при решении задач

Замена переменных в тройных интегралах

При вычислении тройного интеграла, как и двойного, часто удобно сделать замену переменных. Это позволяет упростить вид области интегрирования или подынтегральное выражение. Пусть исходный тройной интеграл задан в декартовых координатах x, y, z в области U:

Требуется вычислить данный интеграл в новых координатах u, v, w. Взаимосвязь старых и новых координат описывается соотношениями: Предполагается, что выполнены следующие условия:
  1. Функции φ, ψ, χ непрерывны вместе со своими частными производными;
  2. Существует взаимно-однозначное соответствие между точками области интегрирования U в пространстве xyz и точками области U' в пространстве uvw;
  3. Якобиан преобразования I (u,v,w), равный отличен от нуля и сохраняет постоянный знак всюду в области интегрирования U.
Тогда формула замены переменных в тройном интеграле записывается в виде: В приведенном выражении означает абсолютное значение якобиана. Для вычисления тройных интегралов часто используются цилиндрические и сферические координаты.

Ниже приводятся примеры вычисления интегралов с использованием других преобразований координат.

Соленоидальное поле. Векторная трубка в соленоидальном поле

Определение.- соленоидальное поле, если .

Векторная линия обладает тем свойством, что в любой ее точке вектор касательной к линии совпадает с .

Векторная трубка – это совокупность векторных линий.

Пусть - сечения векторной трубки и - ее боковая поверхность. . Рассмотрим внешнюю нормаль к и применим теорему Остроградского: , в случае соленоидального поля. Итак, . На по определению векторной линии , поэтому или . Изменяя направление нормали на на противоположное получаем, что поток соленоидального поля через поперечные сечения векторных трубок постоянен.

Тройные и двойные интегралы при решении задач