Принимаем заказы на выполнение контрольных, курсовых, дипломных работ

Сервис для выполнения любых видов студенческих работ

Сервис для выполнения любых видов студенческих работ

 

Народная медицина

Соблазн возбуждающая  жвачка

Соблазн возбуждающая жвачка

 

KupiVip – крупнейший онлайн-магазин

Выполнение 
работ на заказ. Контрольные, курсовые и дипломные работы

Выполнение работ на заказ. Контрольные, курсовые и дипломные работы

Renoven - антиварикозный   бальзам

Renoven - антиварикозный бальзам

ШефМаркет. Доставка продуктов с рецептами

Уборка   квартир в Москве

Уборка квартир в Москве

Дизайнерская мебель

Заказ и доставка билетов

Заказ и доставка билетов

 Академия Моды и Стиля

Академия Моды и Стиля

 

Интернет-магазин Olympus

Интернет-магазин Olympus<

Вычисление объемов Тройные и двойные интегралы Метод замены переменной Замена переменных в двойных интегралах Вычислить интеграл Двойные интегралы в полярных координатах Геометрические приложения двойных интегралов

Тройные и двойные интегралы при решении задач

Замена переменных в тройных интегралах

Пример Найти объем области U, заданной неравенствами

Решение. Очевидно, что данная область является наклонным параллелепипедом. Удобно сделать такую замену переменных, при которой наклонный параллелепипед преобразуется в прямоугольный. В этом случае тройной интеграл сразу распадается на произведение трех однократных интегралов. Сделаем следующую замену: Область интегрирования U' в новых переменных u, v, w ограничена неравенствами Объем тела равен Вычислим якобиан данного преобразования. Чтобы не выражать старые переменные x, y, z через новые u, v, w, найдем сначала якобиан обратного преобразования: Тогда Следовательно, объем тела равен

  Методами дифференциального исчисления исследовать функцию  и построить ее график.

1. Областью определения данной функции являются все действительные числа (-¥; ¥).

2. Функция является функцией общего вида в смысле четности и нечетности.

3. Точки пересечения с координатными осями: c осью Оу: x = 0; y = 1;

  с осью Ох: y = 0; x = 1;

4. Точки разрыва и асимптоты: Вертикальных асимптот нет.

Наклонные асимптоты: общее уравнение y = kx + b;

Итого: у = -х – наклонная асимптота.

Тройные и двойные интегралы при решении задач