Вычисление объемов Тройные и двойные интегралы Метод замены переменной Замена переменных в двойных интегралах Вычислить интеграл Двойные интегралы в полярных координатах Геометрические приложения двойных интегралов

Тройные и двойные интегралы при решении задач

Вычисление объемов с помощью тройных интегралов

Пример Найти объем шара x2 + y2 + z2 ≤ R2.

Решение. Вычислим объем части шара, расположенной в первом октанте (x ≥ 0, y ≥ 0, z ≥ 0), и затем умножим результат на 8. Получаем

В результате получена известная формула для объема шара радиусом R.

Функция f(x) = ln(1 + x). 

  Получаем: f(x) = ln(1 + x); f(0) = 0;

f¢(x) =

 

 

………………………………………

 

 

Итого:

 

 

  Полученная формула позволяет находить значения любых логарифмов (не только натуральных) с любой степенью точности. Ниже представлен пример вычисления натурального логарифма ln1,5. Сначала получено точное значение, затем – расчет по полученной выше формуле, ограничившись пятью членами разложения. Точность достигает 0,0003.

Тройные и двойные интегралы при решении задач