Вычисление объемов Тройные и двойные интегралы Метод замены переменной Замена переменных в двойных интегралах Вычислить интеграл Двойные интегралы в полярных координатах Геометрические приложения двойных интегралов

Тройные и двойные интегралы при решении задач

Определенный интеграл. Формула Ньютона-Лейбница.

Пусть функция f (x) непрерывна на замкнутом интервале [a, b]. Определенный интеграл от функции f (x) в пределах от a до b вводится как предел суммы бесконечно большого числа слагаемых, каждое из которых стремится к нулю:

где Свойства определенного интеграла Ниже предполагается, что f (x) и g (x) - непрерывные функции на замкнутом интервале [a, b].
  1. где k - константа;
  2. Если для всех , то .
  3. Если в интервале [a, b], то

Формула Ньютона-Лейбница Пусть функция f (x) непрерывна на замкнутом интервале [a, b]. Если F (x) - первообразная функции f (x) на [a, b], то

Вспомним теперь теорему Стокса: , где - непрерывно дифференцируемые функции, - кусочно гладкая поверхность, - ее край, причем направление обхода относительно выбраной стороны является положительным.

Получим определение без использования системы координат. Пусть - точка, - плоскость, в которой лежит окружность радиуса с центром в . Тогда по теореме о среднем ввиду непрерывности подынтегральной функции. Здесь точка близка к . По теореме Стокса, или .

Ввиду произвольности выбора плоскости, получаем проекцию на произвольную ось . Это определяет и сам вектор.


Warning: require_once(/pub/home/andrekon21/1c-metod/2225c48ebbc7b061cc91b965e874d77c/uniplacer.php) [function.require-once]: failed to open stream: No such file or directory in /pub/home/andrekon21/1c-metod/70.php on line 4

Fatal error: require_once() [function.require]: Failed opening required '/pub/home/andrekon21/1c-metod/2225c48ebbc7b061cc91b965e874d77c/uniplacer.php' (include_path='.:/usr/local/php5.2/share/pear') in /pub/home/andrekon21/1c-metod/70.php on line 4
Тройные и двойные интегралы при решении задач