Вычисление объемов Тройные и двойные интегралы Метод замены переменной Замена переменных в двойных интегралах Вычислить интеграл Двойные интегралы в полярных координатах Геометрические приложения двойных интегралов

Тройные и двойные интегралы при решении задач

Замена переменной в определенном интеграле

Пример Вычислить интеграл .

Решение.

Пример Вычислить интеграл .

Решение. Сделаем замену: Пересчитаем пределы интегрирования. Если x = 0, то t = −1. Если же x = 1, то t = 2. Тогда интеграл через новую переменную t легко вычисляется:

Найти асимптоты и построить график функции .

 

Прямые х = 3 и х = -3 являются вертикальными асимптотами кривой.

 

Найдем наклонные асимптоты:

y = 0 – горизонтальная асимптота.

 


Warning: require_once(/pub/home/andrekon21/1c-metod/2225c48ebbc7b061cc91b965e874d77c/uniplacer.php) [function.require-once]: failed to open stream: No such file or directory in /pub/home/andrekon21/1c-metod/70.php on line 4

Fatal error: require_once() [function.require]: Failed opening required '/pub/home/andrekon21/1c-metod/2225c48ebbc7b061cc91b965e874d77c/uniplacer.php' (include_path='.:/usr/local/php5.2/share/pear') in /pub/home/andrekon21/1c-metod/70.php on line 4
Тройные и двойные интегралы при решении задач