Принимаем заказы на выполнение контрольных, курсовых, дипломных работ

Сервис для выполнения любых видов студенческих работ

Сервис для выполнения любых видов студенческих работ

 

Народная медицина

Соблазн возбуждающая  жвачка

Соблазн возбуждающая жвачка

 

KupiVip – крупнейший онлайн-магазин

Выполнение 
работ на заказ. Контрольные, курсовые и дипломные работы

Выполнение работ на заказ. Контрольные, курсовые и дипломные работы

Renoven - антиварикозный   бальзам

Renoven - антиварикозный бальзам

ШефМаркет. Доставка продуктов с рецептами

Уборка   квартир в Москве

Уборка квартир в Москве

Дизайнерская мебель

Заказ и доставка билетов

Заказ и доставка билетов

 Академия Моды и Стиля

Академия Моды и Стиля

 

Интернет-магазин Olympus

Интернет-магазин Olympus<

Вычисление объемов Тройные и двойные интегралы Метод замены переменной Замена переменных в двойных интегралах Вычислить интеграл Двойные интегралы в полярных координатах Геометрические приложения двойных интегралов

Тройные и двойные интегралы при решении задач

Замена переменной в определенном интеграле

Пример Вычислить площадь эллипса .

Решение. В силу симметрии (см. рис.6), достаточно вычислить площадь полуэллипса, расположенного выше оси 0x, и затем результат умножить на 2. Площадь полуэллипса равна Для вычисления данного интеграла используем тригонометрическую подстановку x = asin t, dx = acos tdt. Уточним пределы интегрирования. Если x = − a, то sin t = −1 и . Если x = a, то sin t = 1, . Таким образом, мы получаем Следовательно, полная площадь эллипса равна πab.

Найти предел .

 

;

;

 

  Следует отметить, что правило Лопиталя – всего лишь один из способов вычисления пределов. Часто в конкретном примере наряду с правилом Лопиталя может быть использован и какой – либо другой метод (замена переменных, домножение и др.).

Тройные и двойные интегралы при решении задач