Принимаем заказы на выполнение контрольных, курсовых, дипломных работ

Сервис для выполнения любых видов студенческих работ

Сервис для выполнения любых видов студенческих работ

 

Народная медицина

Соблазн возбуждающая  жвачка

Соблазн возбуждающая жвачка

 

KupiVip – крупнейший онлайн-магазин

Выполнение 
работ на заказ. Контрольные, курсовые и дипломные работы

Выполнение работ на заказ. Контрольные, курсовые и дипломные работы

Renoven - антиварикозный   бальзам

Renoven - антиварикозный бальзам

ШефМаркет. Доставка продуктов с рецептами

Уборка   квартир в Москве

Уборка квартир в Москве

Дизайнерская мебель

Заказ и доставка билетов

Заказ и доставка билетов

 Академия Моды и Стиля

Академия Моды и Стиля

 

Интернет-магазин Olympus

Интернет-магазин Olympus<

Вычисление объемов Тройные и двойные интегралы Метод замены переменной Замена переменных в двойных интегралах Вычислить интеграл Двойные интегралы в полярных координатах Геометрические приложения двойных интегралов

Тройные и двойные интегралы при решении задач

Основные свойства тройного интеграла

Пусть функции f (x,y,z) и g (x,y,z) интегрируемы в области U. Тогда справедливы следующие свойства:

  1. , где k - константа;
  2. Если в любой точке области U, то ;
  3. Если область U является объединением двух непересекающихся областей U1 и U2, то ;
  4. Пусть m - наименьшее и M - наибольшее значение непрерывной функции f (x,y,z) в области U. Тогда для тройного интеграла справедлива оценка: где V - объем области интегрирования U.
  5. Теорема о среднем значении тройного интеграла. Если функция f (x,y,z) непрерывна в области U, то существует точка M0 U, такая, что где V - объем области U.

Пример Оценить максимальное значение тройного интеграла где U представляет собой шар с центром в начале координат и радиусом R = 6. Решение. Уравнение шара имеет вид Используя свойство 6, можно записать где объем шара V равен Максимальное значение M подынтегральной функции равно Отсюда получаем верхнюю оценку тройного интеграла:

Пример Оценить максимальное и минимальное значение тройного интеграла

где область U является параллелепипедом: Решение. Сначала вычислим объем области интегрирования U: Оценка интеграла выглядит как Здесь минимальное значение m подынтегральной функции равно Соответственно, максимальное значение M составляет Таким образом, оценка интеграла имеет вид

Формула Остроградского. Ее векторная запись

Теорема. Пусть - замкнутая кусочно-гладкая поверхность, ограничивающая тело в пространстве. Пусть выбрана внешняя сторона . Пусть - функции, имеющие непрерывные производные на . Тогда . Равносильная формулировка: , где - внешняя нормаль к .

Доказательство. Предположим, что ограничено сверху - графиком функции , снизу - , , а сбоку – цилиндрической поверхностью .

Вычислим, т.к. на внешняя нормаль составляет с осью тупой угол.

Далее, на и можно добавить к сумме слагаемое .

Итак, .

Далее, если поверхность можно представить в виде объединения поверхностей и цилиндрической поверхности, то ,и, при аналогичных условиях, .

Поэтому, если поверхность удовлетворяет условиям всех трех случаев, то .

Теперь предположим, что состоит из конечного числа тел , разделенных гладкими поверхностями , причем эти тела удовлетворяют сформулированным выше условиям. Для простоты, пусть .

Тогда . Каждый из интегралов преобразуем по формуле Остроградского-Гаусса как , где взяты внешние стороны поверхностей .

Поверхности имеют общую часть , причем их внешние нормали на противоположны и интегралы по от взаимно сократятся, поэтому

Тройные и двойные интегралы при решении задач