Принимаем заказы на выполнение контрольных, курсовых, дипломных работ

Сервис для выполнения любых видов студенческих работ

Сервис для выполнения любых видов студенческих работ

 

Народная медицина

Соблазн возбуждающая  жвачка

Соблазн возбуждающая жвачка

 

KupiVip – крупнейший онлайн-магазин

Выполнение 
работ на заказ. Контрольные, курсовые и дипломные работы

Выполнение работ на заказ. Контрольные, курсовые и дипломные работы

Renoven - антиварикозный   бальзам

Renoven - антиварикозный бальзам

ШефМаркет. Доставка продуктов с рецептами

Уборка   квартир в Москве

Уборка квартир в Москве

Дизайнерская мебель

Заказ и доставка билетов

Заказ и доставка билетов

 Академия Моды и Стиля

Академия Моды и Стиля

 

Интернет-магазин Olympus

Интернет-магазин Olympus<

Вычисление объемов Тройные и двойные интегралы Метод замены переменной Замена переменных в двойных интегралах Вычислить интеграл Двойные интегралы в полярных координатах Геометрические приложения двойных интегралов

Тройные и двойные интегралы при решении задач

Производная сложной функции

Пример Вычислить интеграл .

Решение. Применяем подстановку . Тогда или . С использованием данной подстановки интеграл легко вычисляется:

Пример Найти интеграл .

Решение. Перепишем интеграл в виде Обозначая 2e = a (это не замена переменной - аргументом по-прежнему остается x), получаем табличный интеграл

Пример Вычислить интеграл .

Решение. Запишем интеграл как Используя замену получаем ответ

Пример Вычислить интеграл .

Решение. Сделаем следующую подстановку: Следовательно,

Двойной интеграл. Его основные свойства и приложения

Мы будем рассматривать функции , определенные на квадрируемом (т.е. имеющем площадь) множестве . Если вспомнить теорию определенного интеграла, то мы начинали ее изложение с понятия разбиения отрезка . По аналогии, определим разбиение квадрируемого множества , как представление множества в виде объединения конечного числа квадрируемых частей, .

(Практически всегда представляет собой криволинейную трапецию или конечное объединение криволинейных трапеций. Можно считать, что и разбиение на части определяется с помощью непрерывных кривых, т.е. все - также криволинейные трапеции или их конечные объединения).

В одномерном случае мы рассматривали длины частей разбиения . В двумерном случае обобщение понятия длины будет площадь . Однако нам потребуется также и понятие диаметра. Эта величина определяется как точная верхняя грань расстояния между точками множества .

Тройные и двойные интегралы при решении задач