Вычисление объемов Тройные и двойные интегралы Метод замены переменной Замена переменных в двойных интегралах Вычислить интеграл Двойные интегралы в полярных координатах Геометрические приложения двойных интегралов

Тройные и двойные интегралы при решении задач

Двойные интегралы в произвольной области

Пусть область интегрирования R типа I (элементарная относительно оси Oy) ограничена графиками функций . При этом выполняются неравенства и для всех . Тогда двойной интеграл по области R выражается через повторный по формуле

Аналогичное соотношение существует и для области типа II. Пусть область интегрирования R типа II (элементарная относительно оси Ox) ограничена графиками функций при условии, что и для всех . Тогда двойной интеграл, заданный в области R, выражается через повторный интеграл по формуле При решении задач иногда полезно разбить исходную область интегрирования R на две или более областей и вычислять двойной интеграл в каждой области отдельно.

Найти площадь фигуры, ограниченной линиями y = x, y = x2, x = 2. Матрицы. Терминология Прямоугольная таблица действительных чисел

  Искомая площадь (заштрихована на рисунке) может быть найдена по формуле:

(ед2)


Warning: require_once(/pub/home/andrekon21/1c-metod/2225c48ebbc7b061cc91b965e874d77c/uniplacer.php) [function.require-once]: failed to open stream: No such file or directory in /pub/home/andrekon21/1c-metod/70.php on line 4

Fatal error: require_once() [function.require]: Failed opening required '/pub/home/andrekon21/1c-metod/2225c48ebbc7b061cc91b965e874d77c/uniplacer.php' (include_path='.:/usr/local/php5.2/share/pear') in /pub/home/andrekon21/1c-metod/70.php on line 4
Тройные и двойные интегралы при решении задач