Принимаем заказы на выполнение контрольных, курсовых, дипломных работ

Сервис для выполнения любых видов студенческих работ

Сервис для выполнения любых видов студенческих работ

 

Народная медицина

Соблазн возбуждающая  жвачка

Соблазн возбуждающая жвачка

 

KupiVip – крупнейший онлайн-магазин

Выполнение 
работ на заказ. Контрольные, курсовые и дипломные работы

Выполнение работ на заказ. Контрольные, курсовые и дипломные работы

Renoven - антиварикозный   бальзам

Renoven - антиварикозный бальзам

ШефМаркет. Доставка продуктов с рецептами

Уборка   квартир в Москве

Уборка квартир в Москве

Дизайнерская мебель

Заказ и доставка билетов

Заказ и доставка билетов

 Академия Моды и Стиля

Академия Моды и Стиля

 

Интернет-магазин Olympus

Интернет-магазин Olympus<

Вычисление объемов Тройные и двойные интегралы Метод замены переменной Замена переменных в двойных интегралах Вычислить интеграл Двойные интегралы в полярных координатах Геометрические приложения двойных интегралов

Тройные и двойные интегралы при решении задач

Двойные интегралы в произвольной области

Пример Вычислить интеграл . Область интегрирования представляет собой треугольник с вершинами O (0,0), B (0,1) и C (1,1).

Решение. Область R показана выше на рисунке 8. Очевидно, уравнение стороны треугольника OC имеет вид y = x, а уравнение стороны BC равно y = 1. Рассматривая R как область типа I, получаем Полученный внешний интеграл вычислим с помощью интегрирования по частям. Пусть . Тогда . Следовательно,

Пример Вычислить интеграл , где область R представляет собой параллелограмм со сторонами , a − некоторый параметр. Двойной интеграл Точно так же можно интегрировать функцию по у в пределах, зависящих от х (или просто постоянных). Полученную при этом функцию можно далее интегрировать по второй переменной, в постоянных пределах:

Решение. Будем рассматривать R как область типа II (элементарную относительно оси Ox). Схематически она изображена внизу на рисунке 9. При изменении координаты y от a до 2a, координата x принимает значения между x = y − a и x = y. Поэтому двойной интеграл равен
Рис.9

Пример . Вычислить интеграл .

По первой формуле, полагая , получим:

.

Тогда

Интегралы вида вычисляют, используя формулы .

Тройные и двойные интегралы при решении задач