Принимаем заказы на выполнение контрольных, курсовых, дипломных работ

Сервис для выполнения любых видов студенческих работ

Сервис для выполнения любых видов студенческих работ

 

Народная медицина

Соблазн возбуждающая  жвачка

Соблазн возбуждающая жвачка

 

KupiVip – крупнейший онлайн-магазин

Выполнение 
работ на заказ. Контрольные, курсовые и дипломные работы

Выполнение работ на заказ. Контрольные, курсовые и дипломные работы

Renoven - антиварикозный   бальзам

Renoven - антиварикозный бальзам

ШефМаркет. Доставка продуктов с рецептами

Уборка   квартир в Москве

Уборка квартир в Москве

Дизайнерская мебель

Заказ и доставка билетов

Заказ и доставка билетов

 Академия Моды и Стиля

Академия Моды и Стиля

 

Интернет-магазин Olympus

Интернет-магазин Olympus<

Вычисление объемов Тройные и двойные интегралы Метод замены переменной Замена переменных в двойных интегралах Вычислить интеграл Двойные интегралы в полярных координатах Геометрические приложения двойных интегралов

Тройные и двойные интегралы при решении задач

Двойные интегралы в прямоугольной области

Пусть область интегрирования R представляет собой прямоугольник . Тогда двойной интеграл в такой области выражается через повторный интеграл в следующем виде:

В данном случае область интегрирования R относится одновременно к типу I и II, так что у нас есть возможность выбирать, по какой переменной (x или y) начинать интегрировать функцию f (x,y). Обычно удобнее начинать с более простого интеграла. В частном случае, когда подынтегральная функция f (x,y) "расщепляется" на произведение f (x)g(y), двойной интеграл равен произведению двух определенных интегралов:

Пример Вычислить двойной интеграл в области . Задание 11. Вычислить интегралы от функции комплексного переменного: Так как подынтегральная функция аналитична всюду, то можно воспользоваться формулой Ньютона-Лейбница:

Решение. Как видно, подынтегральная функция f (x,y) представляет собой произведение f (x)g(y). Следовательно, интеграл равен

  К таким интегралам относится интеграл вида , где Р(х)- многочлен степени выше второй. Эти интегралы называются эллиптическими.

  Если степень многочлена Р(х) выше четвертой, то интеграл называется ультраэллиптическим.

  Если все – таки интеграл такого вида выражается через элементарные функции, то он называется псевдоэллиптическим.

  Не могут быть выражены через элементарные функции следующие интегралы:

 

1)       - интеграл Пуассона ( Симеон Дени Пуассон – французский математик (1781-1840))

2)       - интегралы Френеля (Жан Огюстен Френель – французский ученый (1788-1827) - теория волновой оптики и др.)

3)       - интегральный логарифм

4)       - приводится к интегральному логарифму

5)       - интегральный синус

6)       - интегральный косинус

Тройные и двойные интегралы при решении задач