Принимаем заказы на выполнение контрольных, курсовых, дипломных работ

Сервис для выполнения любых видов студенческих работ

Сервис для выполнения любых видов студенческих работ

 

Народная медицина

Соблазн возбуждающая  жвачка

Соблазн возбуждающая жвачка

 

KupiVip – крупнейший онлайн-магазин

Выполнение 
работ на заказ. Контрольные, курсовые и дипломные работы

Выполнение работ на заказ. Контрольные, курсовые и дипломные работы

Renoven - антиварикозный   бальзам

Renoven - антиварикозный бальзам

ШефМаркет. Доставка продуктов с рецептами

Уборка   квартир в Москве

Уборка квартир в Москве

Дизайнерская мебель

Заказ и доставка билетов

Заказ и доставка билетов

 Академия Моды и Стиля

Академия Моды и Стиля

 

Интернет-магазин Olympus

Интернет-магазин Olympus<

Вычисление объемов Тройные и двойные интегралы Метод замены переменной Замена переменных в двойных интегралах Вычислить интеграл Двойные интегралы в полярных координатах Геометрические приложения двойных интегралов

Тройные и двойные интегралы при решении задач

Геометрические приложения двойных интегралов

Площадь плоской фигуры Если f (x,y) = 1 в интеграле , то двойной интеграл равен площади области интегрирования R. Площадь области типа I (элементарной относительно оси Оy) (рисунок 1) выражается через повторный интеграл в виде Аналогично, площадь области типа II (элементарной относительно оси Оx) (рисунок 2) описывается формулой
Рис.1 Рис.2
Объем тела Если f (x,y) > 0 в области интегрирования R, то объем цилиндрического тела с основанием R, ограниченного сверху поверхностью z = f (x,y), выражается формулой В случае, когда R является областью типа I, ограниченной линиями , объем тела равен Для области R типа II, ограниченной графиками функций , объем соответственно равен Если в области R выполняется неравенство , то объем цилиндрического тела между поверхностями z1 = f (x,y) и z2 = g (x,y) с основанием R равен Площадь поверхности Предположим, что поверхность задана функцией z = f (x,y), имеющей область определения R. Тогда площадь такой поверхности над областью z определяется формулой при условии, что частные производные и непрерывны всюду в области R. Площадь и объем в полярных координатах Пусть S является областью, ограниченной линиями (рисунок 3). Тогда площадь этой области определяется формулой Приближенный метод интегрирования систем дифференциальных уравнений первого порядка
Рис.3
Объем тела, ограниченного сверху поверхностью с основанием S, выражается в полярных координатах в виде

Интегрирование тригонометрических функций

Интегралы вида

вычисляют, используя следующие тригонометрические формулы:

Тройные и двойные интегралы при решении задач