Тройные и двойные интегралы Вычислить объем единичного шара Геометрические приложения криволинейных интегралов Вычислить площадь поверхности Несобственные интегралы Интегральный признак Коши Интегрирование гиперболических функций

Тройные и двойные интегралы при решении задач

Геометрические приложения двойных интегралов

Пример Вычислить объем единичного шара.

Решение. Уравнение сферы радиусом 1 имеет вид (рисунок 14). В силу симметрии, ограничимся нахождением объема верхнего полушара и затем результат умножим на 2. Уравнение верхней полусферы записывается как Преобразуя это уравнение в полярные координаты, получаем В полярных координатах область интегрирования R описывается множеством . Следовательно, объем верхнего полушара выражается формулой Сделаем замену переменной для оценки последнего интеграла. Пусть . Тогда . Уточним пределы интегрирования: t = 1 при r = 0, и, наоборот, t = 0 при r = 1. Получаем Таким образом, оьъем единичного шара равен

Пример Используя полярные координаты, найти объем конуса высотой H и радиусом основания R (рисунок 15). Экстремум функции нескольких переменных. Необходимое и достаточное условие экстремума. Определение. Если для функции z = f(x, y), определенной в некоторой области, в некоторой окрестности точки М0(х0, у0) верно неравенство

Решение.
Рис.15 Рис.16

Сначала получим уравнение поверхности конуса. Используя подобные треугольники (рисунок 16), можно записать Следовательно, Тогда объем конуса равен

Тройной интеграл. Его основные свойства и приложения. Вычисление тройного интеграла

Рассмотрим кубируемую область в трехмерном пространстве . Разбиение на части осуществляется непрерывными поверхностями. Диаметр разбиения определяется аналогично двумерному случаю. Также, по аналогии, можно определить для функции , разбиения области и выбранных точек интегральную сумму , где обозначает объем области .

Определение. Пусть такое число, что . Тогда мы говорим, что интегрируема на , число есть интеграл по области и обозначаем это так: .

Как и в случае двойного интеграла, выполняются аналогичные свойства 1-6. Можно доказать, что если непрерывна на , то она интегрируема на . Точно также можно убедиться в том, что если точки разрыва лежат на конечном числе непрерывных поверхностей, лежащих в и разбивающих на кубируемые области, то интегрируема на .

Геометрические приложения поверхностных интегралов