Принимаем заказы на выполнение контрольных, курсовых, дипломных работ

Сервис для выполнения любых видов студенческих работ

Сервис для выполнения любых видов студенческих работ

 

Народная медицина

Соблазн возбуждающая  жвачка

Соблазн возбуждающая жвачка

 

KupiVip – крупнейший онлайн-магазин

Выполнение 
работ на заказ. Контрольные, курсовые и дипломные работы

Выполнение работ на заказ. Контрольные, курсовые и дипломные работы

Renoven - антиварикозный   бальзам

Renoven - антиварикозный бальзам

ШефМаркет. Доставка продуктов с рецептами

Уборка   квартир в Москве

Уборка квартир в Москве

Дизайнерская мебель

Заказ и доставка билетов

Заказ и доставка билетов

 Академия Моды и Стиля

Академия Моды и Стиля

 

Интернет-магазин Olympus

Интернет-магазин Olympus<

Тройные и двойные интегралы Вычислить объем единичного шара Геометрические приложения криволинейных интегралов Вычислить площадь поверхности Несобственные интегралы Интегральный признак Коши Интегрирование гиперболических функций

Тройные и двойные интегралы при решении задач

Геометрические приложения криволинейных интегралов

Пример Вычислить длину параболы в интервале .

Решение. Применяя формулу находим, что Для вычисления полученного интеграла сделаем замену . Следовательно, . При x = 0 получаем t = arctg 0 = 0, а при x = 1 − соответственно, t = arctg 2. Тогда длина участка параболы равна Сделаем еще одну замену. Положим . Если t = 0, то z = 0. Если , то В приведенном выше выражении мы использовали тригонометрическое соотношение В результате длина кривой равна Разложим подынтегральное выражение на сумму элементарных рациональных дробей. Следовательно, Решая данную систему уравнений, находим коэффициенты Таким образом,

Понятие о комплексных числах. Определение. Комплексным числом z называется выражение , где a и b – действительные числа, i – мнимая единица, которая определяется соотношением: При этом число a называется действительной частью числа z (a = Re z), а b- мнимой частью (b = Im z).

Двойной интеграл в полярных координатах. Вычисление

Пусть требуется посчитать по области , которая задается в полярных координатах условиями .

Сделаем замену переменных .

При этой замене нарушается взаимная однозначность отображения. Точке соответствует целый отрезок на оси . Однако точка имеет нулевую площадь и теорема справедлива. Осталось вычислить . , . .

Следовательно, .

Полярные координаты бывают очень полезны при вычислениях.

Геометрические приложения поверхностных интегралов