Тройные и двойные интегралы Вычислить объем единичного шара Геометрические приложения криволинейных интегралов Вычислить площадь поверхности Несобственные интегралы Интегральный признак Коши Интегрирование гиперболических функций

Тройные и двойные интегралы при решении задач

Геометрические приложения криволинейных интегралов

Пример Вычислить длину параболы в интервале .

Решение. Применяя формулу находим, что Для вычисления полученного интеграла сделаем замену . Следовательно, . При x = 0 получаем t = arctg 0 = 0, а при x = 1 − соответственно, t = arctg 2. Тогда длина участка параболы равна Сделаем еще одну замену. Положим . Если t = 0, то z = 0. Если , то В приведенном выше выражении мы использовали тригонометрическое соотношение В результате длина кривой равна Разложим подынтегральное выражение на сумму элементарных рациональных дробей. Следовательно, Решая данную систему уравнений, находим коэффициенты Таким образом,

Понятие о комплексных числах. Определение. Комплексным числом z называется выражение , где a и b – действительные числа, i – мнимая единица, которая определяется соотношением: При этом число a называется действительной частью числа z (a = Re z), а b- мнимой частью (b = Im z).

Двойной интеграл в полярных координатах. Вычисление

Пусть требуется посчитать по области , которая задается в полярных координатах условиями .

Сделаем замену переменных .

При этой замене нарушается взаимная однозначность отображения. Точке соответствует целый отрезок на оси . Однако точка имеет нулевую площадь и теорема справедлива. Осталось вычислить . , . .

Следовательно, .

Полярные координаты бывают очень полезны при вычислениях.

Геометрические приложения поверхностных интегралов