Принимаем заказы на выполнение контрольных, курсовых, дипломных работ

Сервис для выполнения любых видов студенческих работ

Сервис для выполнения любых видов студенческих работ

 

Народная медицина

Соблазн возбуждающая  жвачка

Соблазн возбуждающая жвачка

 

KupiVip – крупнейший онлайн-магазин

Выполнение 
работ на заказ. Контрольные, курсовые и дипломные работы

Выполнение работ на заказ. Контрольные, курсовые и дипломные работы

Renoven - антиварикозный   бальзам

Renoven - антиварикозный бальзам

ШефМаркет. Доставка продуктов с рецептами

Уборка   квартир в Москве

Уборка квартир в Москве

Дизайнерская мебель

Заказ и доставка билетов

Заказ и доставка билетов

 Академия Моды и Стиля

Академия Моды и Стиля

 

Интернет-магазин Olympus

Интернет-магазин Olympus<

Тройные и двойные интегралы Вычислить объем единичного шара Геометрические приложения криволинейных интегралов Вычислить площадь поверхности Несобственные интегралы Интегральный признак Коши Интегрирование гиперболических функций

Тройные и двойные интегралы при решении задач

Геометрические приложения поверхностных интегралов

Пример Вычислить площадь поверхности тора, заданного уравнением в цилиндрических координатах.

Решение. Параметрические уравнения тора имеют вид (рисунок 2): Убедимся, что эти уравнения правильно описывают окружность в сечении тора. Действительно, поскольку , то после подстановки получаем Таким образом, поверхность тора описывается следующим вектором: Для вычисления площади поверхности воспользуемся формулой Входящее в эту формулу векторное произведение имеет вид Тогда модуль векторного произведения равен Отсюда находим площадь поверхности тора: Векторное поле Поток векторного поля через поверхность

Интегрирование рациональных дробей.

 

 

 

  Т.к. дробь неправильная, то предварительно следует выделить у нее целую часть:

6x5 – 8x4 – 25x3 + 20x2 – 76x – 7 3x3 – 4x2 – 17x + 6

  6x5 – 8x4 – 34x3 + 12x2  2x2 + 3

 9x3 + 8x2 – 76x - 7

  9x3 – 12x2 – 51x +18

  20x2 – 25x – 25

Разложим знаменатель полученной дроби на множители. Видно, что при х = 3 знаменатель дроби превращается в ноль. Тогда:

 3x3 – 4x2 – 17x + 6 x - 3

  3x3 – 9x2  3x2 + 5x - 2

  5x2 – 17x

  5x2 – 15x

  - 2x + 6

  -2x + 6

  0

Таким образом  3x3 – 4x2 – 17x + 6 = (x – 3)(3x2 + 5x – 2) = (x – 3)(x + 2 )(3x – 1). Тогда:

 

Геометрические приложения поверхностных интегралов