Принимаем заказы на выполнение контрольных, курсовых, дипломных работ

Сервис для выполнения любых видов студенческих работ

Сервис для выполнения любых видов студенческих работ

 

Народная медицина

Соблазн возбуждающая  жвачка

Соблазн возбуждающая жвачка

 

KupiVip – крупнейший онлайн-магазин

Выполнение 
работ на заказ. Контрольные, курсовые и дипломные работы

Выполнение работ на заказ. Контрольные, курсовые и дипломные работы

Renoven - антиварикозный   бальзам

Renoven - антиварикозный бальзам

ШефМаркет. Доставка продуктов с рецептами

Уборка   квартир в Москве

Уборка квартир в Москве

Дизайнерская мебель

Заказ и доставка билетов

Заказ и доставка билетов

 Академия Моды и Стиля

Академия Моды и Стиля

 

Интернет-магазин Olympus

Интернет-магазин Olympus<

Тройные и двойные интегралы Вычислить объем единичного шара Геометрические приложения криволинейных интегралов Вычислить площадь поверхности Несобственные интегралы Интегральный признак Коши Интегрирование гиперболических функций

Тройные и двойные интегралы при решении задач

Геометрические приложения поверхностных интегралов

Пример С помощью формулы Грина найти интеграл . Контур C ограничивает сектор круга радиусом a, лежащий в первом квадранте (рисунок 4).

Решение. В соответствии с формулой Грина находим Следовательно, Переходя к полярным координатам, вычисляем интеграл

Пример Вычислить интеграл с использованием формулы Грина. Контур интегрирования C представляет собой квадрат с вершинами в точках A (1,0), B (0,1), D (−1,0), E (0,−1) (рисунок 5).

Решение. В соответствии с формулой Грина запишем Следовательно, Найдем уравнения сторон квадрата: Далее удобно ввести новые переменные. Пусть . Уравнения сторон квадрата записываются через новые переменные u и v в виде Как видно, образ S первоначальной области интегрирования R является "более симпатичным" квадратом (рисунок 6). Найдем якобиан для нашей замены переменных. Соответственно, абсолютное значение определителя обратной матрицы равно Тогда и интеграл имеет значение Геометрическая интерпретация системы линейных уравнений Как известно, уравнения с двумя переменными вида описывают на координатной плоскости Оху прямую. Система двух уравнений такого вида означает, что ее решения как точки на координатной плоскости должны принадлежать одновременно двум прямым, соответствующим уравнениям этой системы. Отсюда возможны следующие варианты: а) обе прямые пересекаются, и тогда система имеет единственное решение; б) прямые параллельны, и система не имеет решения (несовместна); в) прямые совпадают, т.е. ранг системы равен единице, и система имеет бесчисленное множество решений.
Рис.5 Рис.6

Метод интегрирования по частям

Пример

=

=

Геометрические приложения поверхностных интегралов